Skip to main content

Assessment of Myocardial Perfusion with 15O-Water

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 43 Accesses

Abstract

Assessment of regional myocardial blood flow at rest and after physiological or pharmacological stress is paramount in the diagnosis of coronary artery disease for assessment of interventions designed to improve nutritive perfusion and for delineation of the effects of noncoronary disease on myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann SR. Quantification of myocardial perfusion with positron emission tomography. In: Bergmann SR, Sobel BE (eds): Positron Emission Tomography of the Heart. Mount Kisco, NY: Futura Publishing, 1992, pp 97–127.

    Google Scholar 

  2. de Jong RM, Blanksma PK, Willemsen ATM, Anthonio RL, Meeder JG, Pruim J, Vaalburg W, Lie KI. Posterolateral defect of the normal human heart investigated with nitrogen-13-ammonia and dynamic PET. J Nucl Med 35:581–585, 1995.

    Google Scholar 

  3. Krivokapich J, Smith GT, Huang S-C, Hoffman EJ, Ratib O, Phelps ME, Schelbert HR. 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers. Circulation 80:1328–1337, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using 13N-ammonia, and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1032–1042, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Demer LL. Gould LK, Golstein RA, Kirkeeide RL, Mullani NA, Smalling RW, Nishikawa A, Merhige ME. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 79:825–835, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein RA, Kirkeeide RL, Demer LL, Merhige ME, Nishikawa A, Smalling RW, Mullani NA, Gould LK. Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 79:1473–1478, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 70:496–507, 1992.

    PubMed  CAS  Google Scholar 

  8. Herrero P, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Nonivasive quantitation of regional myocardial blood flow with Rubidium-82, and positron emission tomography: Exploration of a mathematical model. Circulation 82:1377–1386, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Kinetics of copper-PTSM in isolated hearts: A novel tracer for measuring blood flow with positron emission tomography. J Nucl Med 30:1843–1847, 1989.

    PubMed  CAS  Google Scholar 

  10. Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Assessment of regional myocardial and renal blood flow using copper-PTSM and positron emission tomography. Circulation 82:990–997, 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Herrero P, Markham J, Weinheimer CJ, Anderson CJ, Welch MJ, Green MA, Bergmann SR. Quantification of regional myocardial perfusion with generator-produced 62Cu-PTSM and positron emission tomography. Circulation 87:173–183, 1993.

    PubMed  CAS  Google Scholar 

  12. Bergmann SR, Fox KAA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 70: 724–733, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Walsh NM, Bergmann SR, Steele RL, Kenzora JL, Ter-Pogossian MM, Sobel BE, Geltman EM. Delineation of impaired regional myocardial perfusion by positron emission tomography with H15O. Circulation 78:612–620, 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Kety S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3:1–41, 1951.

    PubMed  CAS  Google Scholar 

  15. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308, 1979.

    Article  PubMed  CAS  Google Scholar 

  16. Henze E, Huang S-C, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 24:987–996, 1983.

    PubMed  CAS  Google Scholar 

  17. Herrero P, Markham J, Myears DW, Weinheimer CJ, Bergmann SR. Measurement of myocardial blood flow with positron emission tomography: Correction for count spillover and partial volume effects. Math Comput Model 11:807–812, 1988.

    Article  Google Scholar 

  18. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water, and positron emission tomography. J Am Coll Cardiol 14:639–652, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, Ono Y, Shishido F, Inugami A, Tomura N, Higano S, Fujita H, Sasaki H, Nakamichi H, Mizusawa S, Kondo Y, Uemura K. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Circulation 78:104–115, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Herrero P, Markham J, Bergmann SR. Quantitation of myocardial blood flow with H150 and positron emission tomography: Assessment and error analysis of a mathematical approach. J Comp Assist Tomogr 13:862–873, 1989.

    Article  CAS  Google Scholar 

  21. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, Galassi A, de Silva R, Jones T, Maseria A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885, 1991.

    PubMed  CAS  Google Scholar 

  22. Hack SN, Eichung JO, Bergmann SR, Sobel BE. External quantification of myocardial perfusion by exponential infusion of positron emitting radionuclides. J Clin Invest 66:918–927, 1980

    Article  PubMed  CAS  Google Scholar 

  23. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, Jones T. 1992. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water, positron emission tomography. J Nucl Med 33:1669–1677, 1992.

    Google Scholar 

  24. Herrero P, Staudenherz A, Walsh JF, Gropler RJ, Bergmann SR. Heterogeneity of myocardial perfusion provides the physiological basis of perfusable tissue index. J Nucl Med 36:320–327, 1995.

    PubMed  CAS  Google Scholar 

  25. Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A, Jones T. Myocardial tissue fraction—correction for partial vlume effects and measure of tissue viability. J Nucl Med 32:2169–2175, 1991.

    PubMed  CAS  Google Scholar 

  26. Bergmann SR, Weinheimer CJ, Toeniskoetter PD, Markham J, Staudenherz A, Walsh JF, Gropler FJ, Herrero P. Estimation of myocardial perfusion with PET and oxygen-15-water, administered by constant intravenous infusion (abstr). J Nucl Med 34:86, 1993.

    Google Scholar 

  27. Rechavia E, Araujo LI, de Silva R, Kushwaha R, Kushwaha SS, Lammerstma AA, Jones T, Mitchell A, Maseri A, Yacoub MH. Dipyridamole vasodilator response after human orthotopic heart transportation: Quantification by oxygen-15-labeled-water, and positron emission tomography. J Am Coll Cardiol 19:100–106, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Shelton ME, Senneff MJ, Ludbrook PA, Sobel BE, Bergmann SR. Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in conductance vessels in patients with chest pain with angiographically normal coronary arteries. J Nucl Med 34:717–722, 1993.

    PubMed  CAS  Google Scholar 

  29. Senneff MJ, Geltman EM, Bergmann SR. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med 32:2037–2042, 1991.

    PubMed  CAS  Google Scholar 

  30. Walsh MN, Geltman EM, Steele RL, Kenzora JL, Ludbrook PA, Sobel BE, Bergmann SR. Augmented myocardial perfusion reserve after angioplasty quantified by positron emission tomography with H2 15O. J Am Coll Cardiol 15:119–127, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxyen consumption, and regional function after coronary thrombolysis. Cor Art Dis 1:687–696, 1990.

    Article  Google Scholar 

  32. Senneff MJ, Hartman J, Sobel BE, Geltman EM, Bergmann SR. Persistence of coronary vasodilator responsivity after cardiac transplantation. Am J Cardiol 71:333–338, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 16:586–595, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, Nihoyannopoulos P, Hackett D, Galassi AR, Taylor CJV, Lammerstma AA, Jones T, Maseri A. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 86:167–178, 1992.

    PubMed  CAS  Google Scholar 

  35. de Silva R, Yamamoto Y, Rhodes CG, Iida H, Nihoyannopoulos P, Davies GJ, Lammertsma AA, Jones T, Maseri A. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 86:1738–1742, 1992.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Herrero, P., Bergmann, S.R. (1996). Assessment of Myocardial Perfusion with 15O-Water. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics