Skip to main content

Assessment of Blood Flow and Substrate Metabolism in the Myocardium of the Normal Human Heart

  • Chapter
Cardiac Positron Emission Tomography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 165))

  • 43 Accesses

Abstract

The function of the human myocardium depends upon a continuous supply of high-energy phosphate, generated mostly through oxidative metabolism. The latter requires delivery of adequate amounts of oxygen and substrates through the coronary circulation. To exemplify the importance of these processes, the human left ventricular myocardium (assuming an average mass of 166 g for a 70 kg person) receives in the resting state about 1901 of blood and consumes about 201 of O2 during a 24 h period, while it synthesizes about 1.2kg of adenosine triphosphate (ATP), that is, about 7.5 times its mass (which is accomplished by “recycling” of ATP). Different from other organs such as the brain, myocardium relies on several substrates for oxidation. These include free fatty acid, glucose, lactate, and ketone bodies. Selection of a given substrate depends on its concentration in plasma but also on hormone concentrations, such as insulin and norepinephrine. The preferential use of a given substrate, as well as substrate interactions together with overall oxidative metabolism, can now be examined and quantified noninvasively with positron emission tomography (PET). This chapter describes findings with PET on myocardial blood flow and overall oxidative metabolism in the normal human myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Araujo L, Lammertsma A, Rhodes C, McFalls E, Iida H, Rechavia E, Galassi A, De Silva R, Jones T, Maseri A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 83:875–885, 1991.

    PubMed  CAS  Google Scholar 

  3. Hutchins G, Schwaiger M, Rosenspire K, Krivokapich J, Schelbert H, Kuhl D. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomogrphic imaging. J Am Coll Cardiol 15:1032–1042, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Chan S, Brunken R, Czernin J, Porenta G, Kuhle W, Krivokapich J, Phelps M, Schelbert H. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men. J Am Coll Cardiol 20:979–985, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Krivokapich J, Stevenson L, Kobashigawa J, Huang S-C, Schelbert H. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation. J Am Coll Cardiol 18:512–517, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Krivokapich J, Huang S-C, Schelbert H. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate. Am J Cardiol 71:1351–1356, 1993.

    Article  PubMed  CAS  Google Scholar 

  7. Sambuceti G, Parodi O, Marcassa C, Neglia D, Salvadori P, Giorgetti A, Bellina RC, Di Sacco S, Nista N, Marzullo P, Tests R, L’Abbate A. Alteration in regulation of myocardial blood flow in one-vessel coronary artery disease determined by position emission tomography. Am J Cardiol 72:538–543, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Czermin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, Hage A, Fung C, Tillisch J, Phelps ME, Schelbert HR. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 88:884–895, 1993.

    Google Scholar 

  9. Müller P, Czernin J, Choi Y, Kim A, Buxton D, Nitzche E, Sun K, Phelps M, Schelbert H. Does exercise during pharmacologic vasodilation increase hyperemic myocardial blood flow? J Am Coll Cardiol 21:309A, 1993.

    Google Scholar 

  10. Senneff M, Geltman E, Bergmann S, Hartman J. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med 32:2037–2042, 1991.

    PubMed  CAS  Google Scholar 

  11. Hicks K, Ganti G, Mullani N, Gould KL. Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use. J Nucl Med 30:1787–1797, 1989.

    PubMed  CAS  Google Scholar 

  12. Porenta G, Kuhle W, Czernin J, Ratib O, Brunken R, Phelps M, Schelbert H. Semiquantitative assessment of myocardial viability and perfusion utilizing polar map displays of cardiac PET images. J Nucl Med 33:1623–1631, 1992.

    Google Scholar 

  13. Laubenbacher C, Rothley J, Sitomer J, Beanlands R, Sawada S, Sutor R, Muller D, Schwaiger M. An automated analysis program for the evaluation of cardiac PET studies: Initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 34:968–978, 1993.

    PubMed  CAS  Google Scholar 

  14. King R, Bassingthwaighte J, Hales J, Rowell L. Stability of heterogeneity of myocardial blood flow in normal awake baboons. 57:285–295, 1985.

    CAS  Google Scholar 

  15. Kuhle W, Porenta G, Huang S-C, Buxton D, Gambhir S, Hansen H, Phelps M, Schelbert H. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86:1004–1017, 1992.

    PubMed  CAS  Google Scholar 

  16. Bol A, Iida H, Essamri B, Vanbutsele R, Labar D, Grandin C, Wijns W, Melin J. Assessment of myocardial oxidative reserve with PET: Comparison of C-11 acetate kinetics with quantitation of metabolic rate of oxygen (MRO2) using 0–15 O2. J Nucl Med 32:988–989, 1991.

    Google Scholar 

  17. Brown M, Marshall DR, Burton BS, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76:687–696, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–634, 1988.

    PubMed  CAS  Google Scholar 

  19. Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, Schelbert HR. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1–11C] acetate and dynamic positron emission tomography. Circulation 79:134–142, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with 11C-acetate and positron emission tomography. J Am Coll Cardiol 12:1054–1063, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined nonivasively in humans with [1-11C] acetate and dynamic positron tomography. Circulation 80:863–872, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Henes CG, S.R. B, Walsh MN, Sobel BE, Geltman EM. Assessment of myocardial oxidative metabolic reserve with positron emission tomogrphy and carbon-11 acetate. J Nucl Med 30:1489–1499, 1989.

    PubMed  CAS  Google Scholar 

  23. Holmberg S, Serzysko W, Varnauskas E. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 190:465–480, 1971.

    Article  PubMed  CAS  Google Scholar 

  24. Henes CG, Bergmann SR, Walsh MN, Geltman EM. Recovery of myocardial perfusion and oxygen consumption after thrombolysis delineated with positron emission tomography (PET). Circulation:II-312, 1989.

    Google Scholar 

  25. Kotzerke J, Hicks R, Wolfe E, Herman W, Molina E, Kuhl D, Schwaiger M. Three-dimensional assessment of myocardial oxidative metabolism: A new approach for regional determination of PET-derived carbon-11-acetate kinetics. J Nucl Med 31:1876–1883, 1990.

    PubMed  CAS  Google Scholar 

  26. vom Dahl J, Herman W, Hicks R, Ortiz-Alonso F, Lee K, Allman K, Wolfe E, Kalff V, Schwaiger M. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography. Circulation 88:395–404, 1993.

    Google Scholar 

  27. Hicks R, Kalff V, Savas V, Starling M, Schwaiger M. Assessment of right ventricular oxidative metabolism by positron emission tomography with C-11 acetate in aortic valve disease. Am J Cardiol 67:753–757, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1–11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, post-ishemic and hyperemic canine myocardium. Circulation 81: 1594–1605, 1991.

    Article  Google Scholar 

  29. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 30:187–193, 1989.

    PubMed  CAS  Google Scholar 

  30. Bing RJ. The Metabolism of the Heart. Harvey Lecture Series. Academic Press, 1954, pp 27–70.

    Google Scholar 

  31. Keul J, Doll E, Steim H, Fleer U, Reindell H. Über den Stoffwechsel des menschlichen Herzens. III. Der oxidative Stoffwechsel des menschlichen herzens unter verschiedenen Arbeitsbedingungen II. Pflügers Arch 282:43–53, 1965.

    Article  CAS  Google Scholar 

  32. Ng C, Huang S-C, Schelbert H, Buxton D. Validation of a model for [1–11C] acetate as a tracer of cardiac oxidative metabolism. Am J Physiol 266:H1304–15, 1994.

    PubMed  CAS  Google Scholar 

  33. Sun K, Cyhen K, Huang S, Buxton D, Kim A, Hansen H, Choi Y, Müller P, Siegel S, Phelps M, Schelbert H. A workable compartmental model for simultaneous measurement of myocardial blood flow and oxygen consumption using C-11 acetate. J Nucl Med 34:4P, 1993.

    Google Scholar 

  34. Hicks R, Herman W, Kalff V, Molina E, Wolfe E, Hutchins G, Schwaiger M. Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol 18:101–111, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Feiring A, Rumberger J. Ultrafast computed tomography analysis of regional redius-to-wall thickness ratios in normal and volume-overloaded human left ventricle. Circulation 85: 1423–1432, 1992.

    PubMed  CAS  Google Scholar 

  36. Pflugfelder P, Sechtem U, White R, Higgins C. Quantification of regional myocardial function by rapid cine MR imaging. Am J Roentgenol 150:523–529, 1988.

    CAS  Google Scholar 

  37. Marcus M, Kerber R, Erhardt J, Falsetti H, Davis D, Abboud F. Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J 94:748–754, 1977.

    Article  PubMed  CAS  Google Scholar 

  38. Phelps ME, Hoffman EJ, Selin CE, Huang SC, Robinson G, MacDonald N, Schelbert H, Kühl DE. Investigation of [18F] 2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med 19:1311–1319, 1978.

    PubMed  CAS  Google Scholar 

  39. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 23: 577–586, 1982.

    PubMed  CAS  Google Scholar 

  40. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30:359–366, 1989.

    PubMed  CAS  Google Scholar 

  41. Choi Y, Hawkins R, Huang S, Gambhir S, Brunken R, Phelps M, Schelbert H. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 32:733–738, 1991.

    PubMed  CAS  Google Scholar 

  42. Berry J, Baker J, Pieper K, Hanson M, Hoffman J, Coleman R. The effect of metabolic milieu on cardiac PET imaging using fluorine-18-deoxyglucose and nitrogen-13-ammonia in normal volunteers. J Nucl Med 32:1518–1525, 1991.

    PubMed  CAS  Google Scholar 

  43. Choi Y, Brunken RC, Hawkins RA, Huang S-C, Buxton DB, Hoh CK, Phelps ME, Schelbert HR. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 20:308–318, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Knuuti M, Nuutila P, Ruotsalainen U, Saraste M, Härkönen R, Ahonen A, Teräs M, Haaparanta M, Wegelius U, Haapanen a, Hartiala J, Viopio-Pulkki L-M. Euglycemic hyperinsulinermic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 33:1255–1262, 1992.

    PubMed  CAS  Google Scholar 

  45. Hicks R, von Dahl J, Lee K, Herman W, Kalff V, Schwaiger M. Insulin-glucose clamp for standardization of metabolic conditions during F-18 fluoro-deoxyglucose PET imaging. J Am Coll Cardiol 17:381A, 1991.

    Google Scholar 

  46. Marshall RC, Huang SC, Nash WW, Phelps ME. Investigation of the 18-fluorodeoxyglucose tracer kinetic model to accurately measure the myocardial metabolic rate for glucose during ischemia: Preliminary notes. J Nucl Med 24:1060–1064, 1983.

    PubMed  CAS  Google Scholar 

  47. DeFronzo R, Tobin J, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223, 1979.

    PubMed  CAS  Google Scholar 

  48. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson RC, Henze E, Schelbert HR. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation, 67:766–778, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Gropler R, Seigel B, Lee K, Moerlein S, Perry D, Bergmann S, Geltman E. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 31:1749–1756, 1990.

    PubMed  CAS  Google Scholar 

  50. Grover-McKay M, Huang SC, Hoffman EJ, Araujo LI, Phelps ME, Schelbert HR. Noninvasive quantification of myocardial blood flow in dogs with rubidium-82 and PET. J Nucl Med 27:976, 1986.

    Google Scholar 

  51. Sochor H, Schelbert H, Schwaiger M, Henze E, Phelps M. Studies of fatty acid metabolism with positron emission tomography in patients with cardiomyopathy. Eur J Nucl Med 12:S66–S69, 1986.

    Article  PubMed  Google Scholar 

  52. Nuutila P, Koivisto V, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, Bergman J, Solin O, Voipio-Pulki L, Wegelius U. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89:1767–1774, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Beanlands R, Bach D, Raylman R, Armstrong W, Wilson V, Montieth M, Moore C, Bates E, Schwaiger M. Acute effects of dobutamine on myocardial oxygen consumption and cardiac effeciency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy. J Am Coll Cardiol 22:1389–1398, 1998.

    Article  Google Scholar 

  54. Czernin J, Müller P, Chan S, Brunken R, Porenta G, Krivokapich J, Chen K, Chan A, Phelps M, Schelbert H. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69, 1993.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schelbert, H.R. (1996). Assessment of Blood Flow and Substrate Metabolism in the Myocardium of the Normal Human Heart. In: Schwaiger, M. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 165. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1233-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1233-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8524-3

  • Online ISBN: 978-1-4613-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics