Advertisement

Abstract

Iron aluminides have been of interest since the 1930s when the excellent corrosion resistance of compositions with more than about 18 at% Al was first noted (DeVan 1989; Ziegler 1932). These alloys offer relatively low material cost, conservation of strategic elements, and a lower density than stainless steels. Their tensile strength also compares favorably with many ferritic and austenitic steels. These property advantages have led to the consideration of iron-aluminum alloys for many applications including those listed in Table 9–1 (McKamey et al. 1991; Nachman and Buehler 1956; Sikka et al. 1993). However, limited ductility at ambient temperatures and a sharp drop in strength above 600° C have been major deterrents to their acceptance for many structural applications. More recent studies have demonstrated that improved engineering ductility (to 10–15% in Fe3Al) can be achieved in wrought Fe3Al-based iron aluminide alloys through control of composition and microstructure (Bordeau 1987; Culbertson and Kortovich 1986; Sikka 1991b; Sikka et al. 1993). Accompanying this improvement has been an increased understanding of the causes for ambient temperature embrittlement in this system (Liu et al. 1989, 1990; McKamey and Liu 1992). Because of these advances, iron-aluminide alloys (especially those of up to 50 at% Al) are again being considered for structural uses, especially for applications where their excellent corrosion resistance can be exploited.

Keywords

Acta Metall Scripta Metall Iron Aluminides FeAl Alloy Superlattice Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S. M., and Cahn, J. W., 1975, Acta Metall. 23: 1017–1026.Google Scholar
  2. Aoki, K., and Izumi, O., 1979, Nippon Kinzoku Gakkaishi 43: 1190.Google Scholar
  3. Baker, I., and Gaydosh, D. J., 1987, Mat. Sci. Eng. 96: 147–158.Google Scholar
  4. Baker I., and Munroe, P. R., 1990, in High-Temperature Aluminides and Intermetallics pp. 425–451. Warrendale, PA: The Materials Society, eds. S. H. Whang, C. T. Liu, D. P. Pope, and J. D. Stiegler.Google Scholar
  5. Baker, I., Nagpal, P., Liu, F. and Munroe, P. R., 1991, Acta Metall. Mater. 39(7): 1637–1644.Google Scholar
  6. Baker, I., Schulson, E. M., and Stoloff, N. S., 1986, In Mechanical Behavior of Rapidly Solidified Materials pp. 257–277. Warrendale, PA: The Materials Society, eds. S. M. L. Sastry and B. A. MacDonald.Google Scholar
  7. Beeler, J. R., 1967, In Intermetallic Compounds pp. 233–268. New York: John Wiley & Sons. Ed. J. H. Westbrook.Google Scholar
  8. Boggs, W. E., 1971, J. Electrochem. Soc. 118: 906.Google Scholar
  9. Bordeau, R. G., 1987, Development of Iron Aluminides, AFWAL-TR-4009. Wright-Patterson Air Force Base, OH: Air Force Wright Aeronautical Laboratories.Google Scholar
  10. Bradley, A. J., and Taylor, A., 1937, Proc. Roy. Soc. A159: 56.Google Scholar
  11. Castagna, A., and Stoloff, N. S., 1992, Scripta Metall. Mater. 26: 673–678.Google Scholar
  12. Clark, R. W., and Whittenberger, J. D., 1984, Proc. of the 8th International Thermal Expansion Symposium pp. 189–196. New York: Plenum Press.Google Scholar
  13. Crawford, R. C., 1976, Phil. Mag. 33(3): 529–555.Google Scholar
  14. Crawford, R. C., and Ray, I. L. F., 1977, Phil. Mag. 35: 549–565.Google Scholar
  15. Crawford, R. C., Ray, I. L. F., and Cockayne, D. J. H., 1973, Phil. Mag. 27:1–7.Google Scholar
  16. Crimp, M. A., and Vedula, K., 1986, Mat. Sci. Eng. 78: 193–200.Google Scholar
  17. Crimp, M. A., Vedula, K. M., and Gaydosh, D. J., 1987, in High-Temperature Ordered Intermetallics II, MRS Symp. Proc. 81: 499–504.Google Scholar
  18. Culbertson, G., and Kortovich, C. S., 1986, Development of Iron Aluminides AFWAL-TR-85–4155. Wright-Patterson Air Force Base, OH: Air Force Wright Aeronautical Laboratories.Google Scholar
  19. David, S. A., Horton, J. A., McKamey, C. G., Zacharia, T., and Reed, R. W., 1989, Welding J. 68: 372–381s.Google Scholar
  20. David, S. A., and Zacharia, T., 1991, in Heat Resistant Materials pp. 169–73. Materials Park, OH: ASM Int. eds. K. Natesan and D. J. Tillack.Google Scholar
  21. Davies, R. G., 1964, Trans. Met. Soc. AIME 230: 903–907.Google Scholar
  22. Davies, R. G., and Stoloff, N. S., 1963, Acta Metall. 11: 1187–1189.Google Scholar
  23. Décamps, B., Gibson, M. A., Morton, A. J., and Wolfenden, A., 1991 In High-Temperature Ordered Intermetallics IV, MRS Symp. Proc. 213: 685–690.Google Scholar
  24. DeVan, J. H., 1989, In Oxidation of High-Temperature Intermetallics pp. 107–115. Warrendale, PA: The Materials Society, eds. T. Grobstein and J. Doychak.Google Scholar
  25. Diehm, R. S., Kemppainen, M. P., and Mikkola, D. E., 1989, Mater. Man. Proc. 4: 61–72.Google Scholar
  26. Diehm, R. S., and Mikkola, D. E., 1987, In High-Temperature Ordered Intermetallics II, MRS Symp. Proc. 81: 329–334.Google Scholar
  27. Dimiduk, D. M., Mendiratta, M. G., Banerjee, D., and Lipsitt, H. A., 1988, Acta Metall. 36: 2947–2958.Google Scholar
  28. Ehlers, S. K., and Mendiratta, M. G., 1982, Tensile Behavior of Fe-31 at% Al Alloy, AFWAL-TR-82–4089. Wright Patterson Air Force Base, OH: Air Force Wright Aeronautical Laboratories.Google Scholar
  29. Ferguson, P. A., and Liu, C. T., 1992, Scripta Metall. Mater. 26(11): 1669–1674.Google Scholar
  30. Fortnum, R. T., and Mikkola, D. E., 1987, Mat. Sci. Eng. 91: 223–231.Google Scholar
  31. Fuchs, G. E., and Stoloff, N. S., 1988, Acta Metall. 36(5): 1381–1387.Google Scholar
  32. Gaydosh, D. J., Draper, S. L., and Nathal, M. V., 1989, Metall. Trans. A20: 1701–1714.Google Scholar
  33. Gaydosh, D. J., and Nathal, M. V., 1990, Scripta Metall. Mater. 24: 1281–1284.Google Scholar
  34. George, E. P., and Liu, C. T., 1990 J. Mat. Res. 5: 754.Google Scholar
  35. Goodwin, G. M., 1987, Welding J. 77(2): 33s.Google Scholar
  36. Goodwin, G. M., McKamey, C. G., Maziasz, P. J., and Sikka, V. K., 1993, In Proceedings of the Seventh Annual Conference on Fossil Energy Materials, ORNL/FMP-93/1. Oak Ridge, TN: Oak Ridge National Laboratory. Compiled by N. C. Cole and R. R. Judkins, July 1993, pp. 181–188.Google Scholar
  37. Hagel, W. C., 1965, Corrosion 21: 316.Google Scholar
  38. Hanada, S., Watanabe, S., Sato, T., and Izumi, O., 1981, Scripta Metall. 15: 1345–1348.Google Scholar
  39. Hardwick, D., and Wallwork, G., 1978, Rev. High Temp. Mater. 4: 47–74.Google Scholar
  40. Holladay, J. W., 1961, Review of Development in Iron-Aluminum-Base Alloys, DMIC Memo 82. Columbus, OH: Defense Metals Information Center, Battelle Memorial Institute.Google Scholar
  41. Horton, J. A., Liu, C. T., and Koch, C. C. 1984, In High-Temperature Alloys: Theory and Design pp. 309–321. Warrendale, PA: The Materials Society. Ed. J. O. StieglerGoogle Scholar
  42. Inouye, H., 1985, In High-Temperature Ordered Intermetallics, MRS Symp. Proc. 39: 225–261.Google Scholar
  43. Jung, I., and Sauthoff, G., 1989, Z. Metall. 80(7): 484–489.Google Scholar
  44. Justusson, W, Zackay, V. F. and Morgan, E. R., 1957, Trans. ASM 49: 905–921.Google Scholar
  45. Kerr, W. R., 1986, Metall. Trans. A17: 2298–2300.Google Scholar
  46. Knibloe, J. R., Wright, R. N., Sikka, V. K., Baldwin, R. H., and Howell, C. R., 1992, Mat. Sci. Eng. A152: 382–386.Google Scholar
  47. Koch, C. C., 1985, In High-Temperature Ordered Intermetallics, MRS Symp. Proc. 39: 397–410.Google Scholar
  48. Köster, W., and Gödecke, T., 1980. Z. Metall. 71, 765–769.Google Scholar
  49. Köster, W., and Gödecke, T., 1981, Z. Metall. 72, 569–574Google Scholar
  50. —, 1981, Z. Metall. 72, 707–711.Google Scholar
  51. —, 1982, Z. Metall. 73, 111–114.Google Scholar
  52. —, 1982, Z. Metall. 73, 502–510.Google Scholar
  53. —, 1983, Z. Metall. 74, 705–708.Google Scholar
  54. Köster, W., and Gödecke, T., 1984, Z. Metall. 75, 161–169.Google Scholar
  55. —, 1984, Z. Metall. 75, 432–435.Google Scholar
  56. —, 1986, Z. Metall. 77, 408–411.Google Scholar
  57. Köster, W., Wachtel, E., and Gödecke, T., 1985, Z. Metall. 76, 382–387.Google Scholar
  58. Köster, W., Wachtel, E., and Gödecke, T., 1985, Z. Metall. 76, 676–683.Google Scholar
  59. Kuentzler, R, 1983, J. Phys. 44: 1167–1178.Google Scholar
  60. Kuruvilla, A. K., and Stoloff, N. S., 1987, In High-Temperature Ordered Intermetallics II, MRS Symp. Proc. 81: 229–238.Google Scholar
  61. Lawley, A., and Cahn, R. W. 1961, J. Phys. Chem. Solids 20: 204.Google Scholar
  62. Lawley, A., Coll, J. A., and Cahn, R. W. 1960, Trans. Met. Soc. AIME 218: 166–176.Google Scholar
  63. Leamy, H. J., and Kayser, F. X., 1969, Phys. Stat. Solidi 34: 765–780.Google Scholar
  64. Leamy, H. J., Kayser, F. X., and Marcinkowski, M. J., 1969a, Phil Mag. 20: 763–777.Google Scholar
  65. Leamy, H. J., Kayser, F. X., and Marcinkowski, M. J., 1969b, Phil Mag. 20: 779–798.Google Scholar
  66. Lepkowski, W. J., and Holladay, J. W., 1957, The Present State of Development of Iron-Aluminum-Base Alloys. Titanium Metallurgical Laboratory, Battelle Memorial Institute.Google Scholar
  67. Liu, C. T., Fu, C. L., George, E. P., and Painter, G. S., 1991, ISIJ Intern. 31(10): 1192–1200.Google Scholar
  68. Liu, C. T., and George, E. P., 1990, Scripta Metall. Mater. 24: 1285–1290.Google Scholar
  69. Liu, C. T., and George, E. P. 1991, In High-Temperature Ordered Intermetallics IV, MRS Symp. Proc. 213: 527–532.Google Scholar
  70. Liu, C. T., Lee, E. H., and McKamey, C. G., 1989, Scripta Metall. 23: 875–880.Google Scholar
  71. Liu, C. T., and McKamey, C. G., 1990, in High Temperature Aluminides and Intermetallics 133–151. Warrendale PA: The Materials Society, eds. S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler.Google Scholar
  72. Liu, C. T., McKamey, C. G., and Lee, E. H., 1990, Scripta Metall. Mater. 24: 385–389.Google Scholar
  73. Liu, C. T., and Sikka, V. K., 1986, J. Metals 38: 19.Google Scholar
  74. Liu, C. T., Sikka, V. K., and McKamey, C. G., 1993, Alloy Development of FeAl Aluminide Alloys for Structural Use in Corrosive Environments. ORNL/TM12199. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  75. Liu, C. T., White, C. L., and Horton, J. A., 1985, Acta Metall. 33: 213.Google Scholar
  76. Longworth, H. P., and Mikkola, D. E., 1987, Mat. Sci. Eng. 96: 213–229.Google Scholar
  77. Marcinkowski, M. J., and Brown, N., 1961, Acta Metall. 9: 764–786.Google Scholar
  78. —, 1962, J. Appl. Phys. 33(2): 537–552.Google Scholar
  79. Marcinkowski, M. J., Taylor, M. E., and Kayser, F. X., 1975, J. Mat. Sci. 10: 406–414.Google Scholar
  80. Massalski, T. B., 1986, Binary Alloy Phase Diagrams. Materials Park, OH: ASM International.Google Scholar
  81. Maziasz, P. J., Goodwin, G. M., Liu, C. T., and David, S. A. 1992, Scripta Metall. Mater. 27: 1835–1840.Google Scholar
  82. Maziasz, P. J., and McKamey, C. G., 1992, Mat. Sci. Eng. A152: 322–334.Google Scholar
  83. McKamey, C. G., 1993, Unpublished data.Google Scholar
  84. McKamey, C. G., DeVan, J. H., Tortorelli, P. F., and Sikka, V. K., 1991, J. Mat. Res. 6(8): 1779–1805.Google Scholar
  85. McKamey, C. G., Horton, J. A., and Liu, C. T., 1987, In High-Temperature Ordered Intermetallics II, MRS Symp. Proc. 81: 321–327.Google Scholar
  86. McKamey, C. G., Horton, J. A., and Liu, C. T., 1989, J. Mat. Res. 4: 1156–1163.Google Scholar
  87. McKamey, C. G., and Liu, C. T., 1990. Scripta Metall. Mater. 24: 2119–2122.Google Scholar
  88. —, 1992, In Proceedings of First International Symposium on Environmental Effects on Advanced Materials paper #17. Houston, TX: NACE. ed R. D. Kane.Google Scholar
  89. McKamey, C. G., Liu, C. T., David, S. A., Horton, J. A., Pierce, D. H., and Campbell, J. J., 1988, Development of Iron Aluminides for Coal Conversion Systems. ORLN/TM-10793. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  90. McKamey, C. G., Maziasz, P. J., Goodwin, G. M., and Zacharia, T., 1994, Mat. Sci. Eng. A 174: 59–70.Google Scholar
  91. McKamey, C. G., Maziasz, P. J., and Jones, P. W., 1992, J. Mat. Res. 7(8): 2089–2106.Google Scholar
  92. McKamey, C. G., and Pierce, D. H., 1993, Scripta Metall. Mater. 28: 1173–1176.Google Scholar
  93. McKamey, C. G., and Sikka, V. K., 1992, Unpublished Data.Google Scholar
  94. McQueen, H. J., and Kuczynski, 1959, Trans. Met. Soc. AIME 215: 619–622.Google Scholar
  95. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., and Lipsitt, H. A., 1987, Metall. Trans. A18: 283–291.Google Scholar
  96. Mendiratta, M. G., Ehlers, S. K., Dimiduk, D. M., Kerr, W. R., Mazdiyasni, S., and Lipsitt, H. A., 1987, In High-Temperature Ordered Intermetallics II, MRS Symp. Proc. 81: 393–404.Google Scholar
  97. Mendiratta, M. G., Kim, H.-M., and Lipsitt, H. A., 1984, Metall. Trans. A15: 395–399.Google Scholar
  98. Morgand, P., Mouturat, P., and Sainfort, G., 1968, Acta Metall. 16: 867–875.Google Scholar
  99. Morris, D. G., Dadras, M. M. and Morris, M. A. 1993a, Acta Metall. Mater. 41: 97–111.Google Scholar
  100. —, 1993b, MRS Symp. Proc. 288: 623–628.Google Scholar
  101. Morris, D. G., and Morris, M. A., 1990, Mat. Sci. Eng. A 125: 97–106.Google Scholar
  102. Munroe, P. R., and Baker, I., 1991, Acta Metall. Mater. 39: 1011–1017.Google Scholar
  103. —, 1993, J. Mat. Sci. 28: 2299–2303.Google Scholar
  104. Nachman, J. F., and Buehler, W. J., 1954, J. Appl. Phys. 25(3): 307–313.Google Scholar
  105. —, 1956, Application, Properties, and Fabrication of Thermenol Type Alloys, NAVORD Report 4237. Silver Spring, MD: U.S. Naval Ordnance Laboratory. Available from Defense Technical Information Center. Alexandria, VA.Google Scholar
  106. Nagpal, P., and Baker, I, 1990, Metall. Trans. A21: 2281–2282.Google Scholar
  107. Nagpal, P., Baker, I., Liu, F., and Munroe, P. R., 1991, In High-Temperature Ordered Intermetallics IV, MRS Symp. Proc. 213: 533–536.Google Scholar
  108. Okamoto, H., and Beck, P. A., 1971, Metall. Trans. 2: 569–574.Google Scholar
  109. Oki, K., Hasaka, M., and Eguchi, T., 1973, Japan. J. Appl. Phys. 12: 1522–1530.Google Scholar
  110. Oki, K., Towata, S., Tamiya, M., and Eguchi, T., 1981, Trans. Japan Inst. Metals 22: 771.Google Scholar
  111. Paris, D., Lesbats, P., and Levy, J., 1975, Scripta Metall. 9: 1373–1378.Google Scholar
  112. Prakash, U., Buckley, R. A., and Jones, H. 1991, MRS Symp. Proc. 213: 691–696.Google Scholar
  113. Prakash, U., Buckley, R. A., Jones, H., and Sellars, C. M., 1991, ISIJ Inter. 31(10): 1112–1125.Google Scholar
  114. Ray, I. L. F., Crawford, R. C., and Cockayne, D. J. H., 1970, Phil. Mag. 21: 1027–1032.Google Scholar
  115. Riviere, J. P., and Grilhe, J., 1972, Acta Metall. 20: 1275–1280.Google Scholar
  116. Saburi, T., Yamauchi, I., and Nenno, S., 1972, J. Phys. Soc. Japan 32(3): 694–701.Google Scholar
  117. Schmatz, D. J., and Zackay, V. F., 1959, Trans. ASM 51: 299.Google Scholar
  118. Sherby, O. D., and Burke, P. M., 1968, Prog. Mat. Sci. 13: 325.Google Scholar
  119. Shukla, P., and Wortis, M., 1980, Phys. Rev. B21: 159.Google Scholar
  120. Shull, R. D., Okamoto, H., and Beck, P. A., 1976, Solid State Comm. 20: 863.Google Scholar
  121. Sikka, V. K., 1991a, MRS Symp. Proc. 213: 907–912.Google Scholar
  122. —, 1991b, SAMPE Qrt. 22(4): 2–10.Google Scholar
  123. Sikka, V. K., and Baldwin, R. H., 1992, SAMPE Quarterly 24(1): 2–9.Google Scholar
  124. Sikka, V. K., Baldwin, R. H., Reinshagen, J. H., Knibloe, J. R., and Wright, R. N., 1991, MRS Symp. Proc. 213: 901–906.Google Scholar
  125. Sikka, V. K., McKamey, C. G., Howell, C. R., and Baldwin, R. H., 1990, Fabrication and Mechanical Properties of Fe 3 Al-Based Aluminides, ORNL/TM-11465. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  126. —, 1991, Properties of Large Heats of Fe 3 Al-BasedAlloys, ORNL/TM-11796. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
  127. Sikka, V. K., Viswanathan, S., and McKamey, C. G., 1993, Structural Intermetallics, Warrendale, PA: The Materials Society, pp. 483–491. eds. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal.Google Scholar
  128. Slaughter, E. R., and Das, S. K. 1980, In Rapid Solidification Processing: Principles and Technologies, II, pp 354–363. Baton Rouge, LA: Claitor’s Pub. eds. R. Mehrabian, B. H. Kear, and M. Cohen.Google Scholar
  129. Stephens, J. R., 1985, MRS Symp. Proc. 39: 381–395.Google Scholar
  130. Stoloff, N. S., 1988, J. Metals 40: 23.Google Scholar
  131. Stoloff, N. S., and Davies, R. G., 1964, Acta Metall. 12: 473–485.Google Scholar
  132. —, 1966, Prog. Mat. Sci. 13: 1.Google Scholar
  133. Stoloff, N. S., Fuchs, G. E., Kuruvilla, A. K., and Choe, S. J., 1987, MRS Symp. Proc. 81: 247–261.Google Scholar
  134. Sun, Y., Guo, J., Zhang, L., and Zhang, J., 1992, Acta Metall. Sin. A5(l): 7–12.Google Scholar
  135. Sun, Z. Q., Huang, Y. D., Yang, W. Y., and Chen, G. L., 1993, MRS Symp. Proc. 288: 885–890.Google Scholar
  136. Swann, P. R., Duff, W. R., and Fisher, R. M., 1969, Trans. AIME 245: 851–853.Google Scholar
  137. Sykes, G, and Bampfylde, J., 1934, J. Iron Steel Inst. 130: 389.Google Scholar
  138. Taub, A. I., Huang, S. C, and Chang, K. M., 1984, Metall. Trans. 15A: 399.Google Scholar
  139. Taylor, A., and Jones, M., 1958, J. Phys. Chem. Solids 6: 16.Google Scholar
  140. Titran, R. H., Vedula, K. M., and Anderson, G. G., 1985, MRS Symp. Proc. 39: 309–317.Google Scholar
  141. Tomaszewicz, P., and Wallwork, G. R., 1978, Rev. High Temp. Mater. 4: 76–103.Google Scholar
  142. Tortorelli, P. F., and DeVan, J. H., 1992, Mat. Sci. Eng. A153: 573–577.Google Scholar
  143. Umakoshi, Y., and Yamaguchi, M., 1980, Phil. Mag. A41: 573–588.Google Scholar
  144. —, 1981, Phil. Mag. A44: 711–715.Google Scholar
  145. Vedula, K., and Stephens, J. R., 1987, MRS Symp. Proc. 81: 381–391.Google Scholar
  146. Viswanathan, S., Shelton, B. R., Wright, J. K., and, V. K., 1993, Scripta Metall. Mater. 29: 589–594.Google Scholar
  147. Vyas, S., Viswanathan, S., and Sikka, V. K., 1992, Scripta Metall. Mater. 27: 185–190.Google Scholar
  148. Westbrook, J. H., 1956, J. Electrochem. Soc. 103: 54.Google Scholar
  149. Whittenberger, J. D., 1983, Mat. Sci. Eng. 57: 77–85.Google Scholar
  150. —, 1986, Mat. Sci. Eng. 103–113.Google Scholar
  151. Wittig, J. E., Vogt, E., Möller, R., and Frommeyer, G., 1987, Scripta Metall. 21: 721–726.Google Scholar
  152. Woodyard, J. R., and Sikka, V. K., 1991, Unpublished results.Google Scholar
  153. Yamagata, T., and Yoshida, H., 1973, Mat. Sci. Eng. 12: 95–100.Google Scholar
  154. Ziegler, N., 1932, Trans. AIME 100: 267.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • C. G. McKamey

There are no affiliations available

Personalised recommendations