Advertisement

Abstract

In the early 1900s, many binary combinations of metals that form inter-metallic compounds were found. Since then, the mechanical properties of these compounds have been studied mainly from their theoretical implications and requirements to understand the mechanical properties of inter-metallic compounds existing as secondary phases in many alloys used as structural materials. As a result of these efforts, various new findings on the lattice defects and properties of intermetallic compounds were made. Among them were discoveries of (a) the complications introduced by heat treatment in the property/composition relationships of some intermetallic compounds, later leading to the finding of ordered structures formed from solid solutions disordered at high temperatures (Kurnakov, Zhemchuznii, and Zasedatelev 1916); (b) the brittleness of intermetallic compounds in general at temperatures lower than 0.7 Tm (Tm: melting temperature) (Tamman and Dahl 1923); (c) the effect of compositional deviation from stoichiometry on hardness and flow stress; (d) the existence of antiphase boundaries and antiphase domains (Smith 1943); (e) the existence of superlattice dislocations traveling in pairs or groups in ordered lattices (Koehler and Seitz 1947; Marcinkowski, Brown, and Fisher 1961; Marcinkowski 1963); (f) the anomalous temperature dependence of hardness of Ni3Al (Westbrook 1957).

Keywords

Intermetallic Compound Vacancy Concentration Positron Annihilation Positron Lifetime Thermal Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, A., and Izumi, O., 1975, Phys. Stat. Sol. (a), 32: 657–664.CrossRefGoogle Scholar
  2. Ball, A., and Smallman, R. E., 1968, Acta Metall. 16: 233–241.CrossRefGoogle Scholar
  3. Baker, I., and Munroe, P. R., 1990, In High Temperature Aluminides and Intermetallics, ed. S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler, 425–452. Warrendale, PA: TMS.Google Scholar
  4. Barker, H., and Van Ommen, A. H., 1978, Acta Metall. 26: 1047–1053.CrossRefGoogle Scholar
  5. Bakker, H., Lo Cascio, D. M. R., and Di, L. M., 1992, In Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, 433–448. Dordrecht: Kluwer Academic Pub.Google Scholar
  6. Chabik, S., and Rozenfeld, B., 1981, Appl. Phys. 25: 143.CrossRefGoogle Scholar
  7. Chang, Y. A., and Neumann, J. P., 1982, Prog. Solid St. Chem. 14: 221.CrossRefGoogle Scholar
  8. Chang, Y. A., Pike, L. M., Liu, C. T., Bilbrey, A. R., and Stone, D. S., 1993, Intermetallics 1: 107.CrossRefGoogle Scholar
  9. Crimp, M. A., Vedula, K. M., and Gaydosh, D. J., 1987, In High Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc. 81: 499–504.Google Scholar
  10. Darolia, R., 1991, J. Metals 43(3): 44.Google Scholar
  11. —, 1993, In Structural Intermetallics, ed. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, 495–504, Warrendale, PA: TMS.Google Scholar
  12. Eldrup, M., 1986, In Defects in Solids, ed. A. V. Chadwick, M. Terenzi, p. 145, New York and London: Plenum Press.Google Scholar
  13. Fleischer, R. L., 1962, Acta Metall. 10: 835–842.CrossRefGoogle Scholar
  14. —, 1993a, Acta Metall. 41: 863–869.CrossRefGoogle Scholar
  15. —, 1993a, Acta Metall. 41: 1197–1205.CrossRefGoogle Scholar
  16. —, 1993b, J. Mat. Res. 8: 49–58.CrossRefGoogle Scholar
  17. —, 1993c, J. Mat. Res. 8: 59–67.CrossRefGoogle Scholar
  18. Foiles, S. M., and Daw, M S., 1987, J. Mat. Res. 2: 5–15.CrossRefGoogle Scholar
  19. Fox, A. G., and Tabbernor, M. A., 1991, Acta Metall. 39: 669–678.CrossRefGoogle Scholar
  20. Fraser, H. L., Loretto, M. H., Smallman, R. E., and Wasilewski, R. J., 1975, Phil. Mag. A32: 873–879.Google Scholar
  21. Frohberg, G., and Wever, H., 1992, In Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff,485–496, Dordrecht: Kluwer Academic Publ.Google Scholar
  22. Fu, C. L., Ye, Y. Y., and Yoo, M. H., 1993, In High Temperature Ordered Intermetallic Alloys V, Pittsburgh: MRS Symp. Proc. 288: 21–32.Google Scholar
  23. Fu, C. L., and Yoo, M. H., 1992, Mater. Chem. Phys. 32: 25.CrossRefGoogle Scholar
  24. Gaydosh, D. J., Draper, S. L., Noebe, R. D., and Nathal, M. V., 1992, Mat. Sci. Eng. A150: 7-.Google Scholar
  25. Georgopoulos, P., and Cohen, J. B., 1981, Acta Metall. 29: 1535–1551.CrossRefGoogle Scholar
  26. Hautojävri, P., 1987, In Characterization of Defects in Materials, MRS Symp. Proc.82: 1.Google Scholar
  27. Inui, H., Tota, Y., and Yamaguchi, M., 1993, Phil. Mag A 67: 1315–1332.CrossRefGoogle Scholar
  28. Ito, K., Inui, H., Hirano, T., and Yamaguchi, M., 1992, Mat. Sci. Eng. A152: 153–159.Google Scholar
  29. Ito, K., Inui, H., Hirano, T., and Yamaguchi, M., 1994, Acta Metall. In press.Google Scholar
  30. Ito, Y., Shirai, Y., Yamada, Y., and Yamaguchi, Y., 1993, In High Temperature Ordered Intermetallic Alloys V, MRS Symp. Proc. 288: 275–280.Google Scholar
  31. Kao, C. R., and Chang, Y. A., 1993, Intermetallics 1: 237–251.CrossRefGoogle Scholar
  32. Kim, S. M., 1986, Phys. Rev. B 33: 1509–1511.CrossRefGoogle Scholar
  33. Kim, S. M., 1987a, Mater. Sci. Forum 15–18: 1257CrossRefGoogle Scholar
  34. Kim, S. M. 1987b, Mater. Sci. Forum 15–18: 1323.CrossRefGoogle Scholar
  35. —, 1991, J. Mat. Res. 6: 1455–1460.CrossRefGoogle Scholar
  36. Koehler, J. S., and Seitz, F., 1947, J. Appl. Mech. 14: A217.Google Scholar
  37. Kogachi, M., and Kameyama, A., 1993, Scripta Metall. 29: 1329–1334.CrossRefGoogle Scholar
  38. Kogachi, M., Minamigawa, S., and Nakahigashi, K., 1992, Scripta Metall. 27: 407–412.CrossRefGoogle Scholar
  39. Koiwa, M., 1992, In Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, 449–464, Dordrecht: Kluwer Academic Publ.Google Scholar
  40. Kumar, K. S., 1990, International Materials Reviews 35: 293-.Google Scholar
  41. Kurnakov, N. S., Zhemchuznii, S. F., and Zasedatelev, M., 1916, J. Inst. Metals 15: 305.Google Scholar
  42. Liu, C. T., 1987, In High Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc, 81: 355–367.Google Scholar
  43. Liu, C. T., and Kumar, K. S., J. Metals 45 (5): 38.Google Scholar
  44. Liu, C. T., and White, C. L., 1985, In High Temperature Ordered Intermetallic Alloys, MRS Symp. Proc, 39: 365–380.Google Scholar
  45. Marcinkowski, M. J., 1963, In Electron Microscopy and Strength of Crystals, ed. G. Thomas and J. Washburn, New York: Interscience Publishers, p. 333.Google Scholar
  46. Marcinkowski, M. J., Brown, N., and Fisher, R. M., 1961, Acta Metall. 9: 129–137.CrossRefGoogle Scholar
  47. Masaki, K., 1993, Feb., M Sc Thesis, Kyoto University.Google Scholar
  48. McKamey, C. G., Devan, J. H., Tortorelli, P. F., and Sikka, V. K., 1991, J. Mat. Res. 6: 1779–1805.CrossRefGoogle Scholar
  49. Miracle, D. R., 1993, Acta Metall. 41: 649–684.CrossRefGoogle Scholar
  50. Mohandas, E., and Beaven, P. A., 1991, Scripta Metall 25: 2023–2027.CrossRefGoogle Scholar
  51. Moon, J. H., 1973, Phys. Stat. Sol. (a), 17: 521.CrossRefGoogle Scholar
  52. Murarka, S. P., 1983, Silicides for VLSI Applications, New York: Academic Publishers.Google Scholar
  53. Nagpal, P., and Baker, I., 1990, Metall. Trans. 21A: 2281–2282.Google Scholar
  54. Nakayama, Y., and Mabuchi, H., 1993, Intermetallics 1: 41–48.CrossRefGoogle Scholar
  55. Neumann, J. P., Chang, Y. A., and Lee, C. M., 1976, Acta Metall. 24: 593–604.CrossRefGoogle Scholar
  56. Neumann, J. P., and Chang, Y. A., 1979, Z. Metallukde 70: 118.Google Scholar
  57. Nic, J. P., Klansky, J. L., and Mikkola, D. E., 1992, Mat. Sci. Eng. A152: 132–137.Google Scholar
  58. Nishitani, S. R., Masaki, K., Shirai, Y., and Yamaguchi, M., 1991, Scripta Metall. 25: 1921–1925.CrossRefGoogle Scholar
  59. Parthasarathi, A., and Fraser, H. L., 1984, Phil. Mag A, 50: 89–100.CrossRefGoogle Scholar
  60. Porter, W. D., Hisatsune, K., Sparks, C. J., Oliver, W. C, and Dhere, A., 1989, In High Temperature Ordered Intermetallic Alloys III, MRS Symp. Proc. 133: 657–668.Google Scholar
  61. Rusovic, N., and Henig, E. T., 1980, Phys. Stat. Sol. (a), 57: 529–540.CrossRefGoogle Scholar
  62. Schaefer, H. E., Wurschum, R., and Bub, J., 1992, Mater. Sci. Forum 105–110: 439.CrossRefGoogle Scholar
  63. Schultz, P. J., and MacKenzie, I. K., 1982, Positron Annihilation, ed. Coleman P. G., Sharma S. C, and Diana, L. M., p. 553, North-Holland Publ.Google Scholar
  64. Schwab, R., and Gerold, V., 1980, Acta Metall., 28: 433–441.CrossRefGoogle Scholar
  65. Shimotomai, M, Wang, T.-M., Iwata, T., and Doyama, M., 1985, In Positron Annihilation, ed. P. C. Jain, R. M. Singru, and K. P. Gopinathan, p. 140, Singapore: World Scientific Publ. Co.Google Scholar
  66. Shirai, Y., 1988, Bulletin of the Japan Institute of Metals, 27: 869.Google Scholar
  67. Shirai, Y., Nakamura, F., Takeuchi, M., Watanabe, K., and Yamaguchi, M., 1989, In Positron Annihilation, ed. L. Dorikens-Vanpraet, M. Dorikens, and D. Segers, p. 488, Singapore: World Scientific Publishing Company.Google Scholar
  68. Shirai, Y., and Yamaguchi, M., 1992, Mat. Sci. Eng. A152: 173–181.Google Scholar
  69. Shirai Y., Masaki, K., and Yamaguchi, M., 1994, Intermetallics 2: 221–224.CrossRefGoogle Scholar
  70. Simmons, R. O., and Balluffi, R. W., 1960, Phys. Rev. 117: 52–61.CrossRefGoogle Scholar
  71. Smedskjaer, L. C, and Fluss, M. J., 1983, In Solid State: Nuclear Methods, ed. J. N. Mundy, S. J. Rothman, M. J. Fluss, and L. C. Smedskjaer, p. 77. Orlando, FL: Academic press.Google Scholar
  72. Smith, C. S., 1943, Trans AIME 152: 144–148.Google Scholar
  73. Stephens, J. R., 1987, High Temperature Ordered Intermetallic Alloys II, MRS Symp. Proc. 81: 381–395.Google Scholar
  74. Stoloff, N. S., and Davies, R. G., 1966, Prog. Mater. Sci. 13: 1–66.CrossRefGoogle Scholar
  75. Stolwijk, N. A., Van Gend, M., and Bakker, H., 1980, Phil. Mag. A, 42: 783–808.CrossRefGoogle Scholar
  76. Suzuki, K., and Takeuchi, S., 1993, Intermetallics 1: 21–27.CrossRefGoogle Scholar
  77. Takeuchi, S., Hashimoto, T., and Shibuya, T., 1992, J. Mat. Sci. 27: 1380.CrossRefGoogle Scholar
  78. Tammann, G., and Dahl, K., 1923, Z. Znorg. Chem. 126: 104.CrossRefGoogle Scholar
  79. Trifshäuser, W., 1986, In Microscopic Methods in Metals, ed. U. Gonser, p. 249. Berlin, Heidelberg: Springer-Verlag.Google Scholar
  80. Van Ommen, A. H., 1982, Phys. Stat. Sol. (a), 72: 273–280.CrossRefGoogle Scholar
  81. Van Ommen, A. H., Waegemaekers, A. A. H. J., Moleman, A. C, Schlatter, H., and Bakker, H., 1981, Acta Metall., 29: 123–133.CrossRefGoogle Scholar
  82. Vogl, G., Karner, Ch., Randl, O., and Sepiol, B., 1992, Ordered Intermetallics—Physical Metallurgy and Mechanical Behavior, ed. C. T. Liu, R. W. Cahn, and G. Sauthoff, 497–509. Kluwer Academic Publishers.Google Scholar
  83. Vujic, D., Li, Z. and Whang, S. H., 1988, Metall Trans. A 19: 2445–2455.CrossRefGoogle Scholar
  84. Wang, T.-M., Shimotomai, M., and Doyama, M., 1984, J. Phys. F. 14: 37.CrossRefGoogle Scholar
  85. Wasilewski, R. J., 1968, J. Phys. Chem. Solids 29: 39.CrossRefGoogle Scholar
  86. Westbrook, J. H., 1957, Trans AIME 209: 898.Google Scholar
  87. —, ed., 1960, Mechanical Properties of Intermetallic Compounds, New York: John Wiley and Sons.Google Scholar
  88. —, 1967, Intermetallic Compounds, New York: John Wiley and Sons.Google Scholar
  89. —, 1993, In Structural Intermetallics, ed. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, 1–15. Warrendale, PA: TMS.Google Scholar
  90. Westbrook, J. H., and Fleischer, R. L., 1994, In Intermetallic Compounds—Principles and Practice, New York: John Wiley and Sons, in press.Google Scholar
  91. Wood, D. L., and Westbrook, J. H., 1962, Trans. AIME 224: 1024–1037.Google Scholar
  92. Wurschum, R., Greiner, W., Valiev, R. Z., Rapp, M., Sigle, W., Schneeweiss, O., and Schaefer, H. E., 1991, Scripta Metall. 25: 2451–2456.CrossRefGoogle Scholar
  93. Yamaguchi, M., and Inui, H., 1993, In Structural Intermetallics, ed. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, 127–142. Warrendale, PA: TMS.Google Scholar
  94. Yamaguchi, M. and Inui, H., 1994, In Intermetallic Compounds—Principles and Practice, ed. J. H. Westbrook and R. L. Fleischer New York: John Wiley and Sons, in press.Google Scholar
  95. Yamaguchi, M., Shirai, Y., and Inui, H., 1993, High Temperature Ordered Intermetallic Alloys V, MRS Symp. Proc. 288: 131–139.Google Scholar
  96. Yamaguchi, M., and Umakoshi, Y., 1990, Prog. Mater. Sci. 34: 1.CrossRefGoogle Scholar
  97. Yang, W., Dodd, R. A., and Strutt, P. R., 1972, Metall Trans. 3: 2049–2054.CrossRefGoogle Scholar
  98. Yoo, M. H., and Fu, C. L., 1993, In Structural Intermetallics, ed. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal, 283–292. Warrendale, PA: TMS.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. Yamaguchi
  • Y. Shirai

There are no affiliations available

Personalised recommendations