Molecular Cloning of Plant Disease Resistance Genes

  • Gregory B. Martin
Part of the Plant-Microbe Interactions book series (PMI, volume 1)


It has been 90 years since the first confirmation of the genetic basis of plant disease resistance.1 Since then resistance (R) genes have been identified in all major economic plant species and have been incorporated into numerous elite cultivars.2–6 This intensive effort in the discovery and utilization of plant R genes has dramatically increased and stabilized food production throughout the world and ranks as one of the major achievements of modern agriculture.


Yeast Artificial Chromosome Avirulence Gene Cladosporium Fulvum Disease Resistance Locus Bacterial Speck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biffen, R. H. 1905. Mendel’s laws of inheritance and wheat breeding. J. Agrie. Sci. Camb. 1:4–48.Google Scholar
  2. 2.
    Allard, R. W. 1960. Principles of Plant Breeding. John Wiley, New York.Google Scholar
  3. 3.
    Day, P. R. and G. J. Jellis. 1987. Genetics and Plant Pathogenesis. Blackwell Scientific Publications, Oxford.Google Scholar
  4. 4.
    Day, P. R. 1974. Genetics of Host-Parasite Interaction. W. H. Freeman, San Francisco.Google Scholar
  5. 5.
    Jacobs, T. and J. E. Parlevliet. 1993. Durability of Disease Resistance. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  6. 6.
    Simmonds, N. W. 1979. Principles of Crop Improvement. Longman Group Limited, London.Google Scholar
  7. 7.
    Gabriel D. W. and B. G. Rolfe. 1990. Working models of specific recognition in plant-microbe interactions. Annu. Rev. Phytopathol. 28:365–391.Google Scholar
  8. 8.
    Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447–463.PubMedGoogle Scholar
  9. 9.
    Keen, N. T. 1992. The molecular biology of disease resistance. Plant Mol. Biol. 19:109–122.PubMedGoogle Scholar
  10. 10.
    Keen, N. T. 1982. Specific recognition in gene-for-gene host-parasite systems. Adv. Plant Pathol. 1:35–81.Google Scholar
  11. 11.
    Sigee, D. C. 1993. Compatible and incompatible interactions: The hypersensitive response. In Bacterial Plant Pathology: Cellular and Molecular Aspects, pp. 126–171. Cambridge University Press, Cambridge, England.Google Scholar
  12. 12.
    Flor, A. H. 1947. Host-parasite interactions in flax-rust—its genetics and other implications. Phytopathology 45:680–685.Google Scholar
  13. 13.
    Flor, A. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathoelle. 9:275–296.Google Scholar
  14. 14.
    Ellingboe, A. H. 1976. Genetics of host-parasite interactions. In Encyclopedia of Plant Pathology, new series, vol. 4: Physiological Plant Pathology, eds. R. Heitefuss and P. H. Williams, pp 761–778. Springer-Verlag, Heidelberg.Google Scholar
  15. 15.
    Pryor, T. 1987. The origin and structure of fungal disease resistance genes in plants. Trends Genet. 3:157–161.Google Scholar
  16. 16.
    Keen, N. T., A. Bent, and B. Staskawicz. 1993. Plant disease resistance genes: Interactions with pathogens and their improved utilization to control plant diseases. In Biotechnology in Plant Disease Control, pp. 65–88. Wiley-Liss.Google Scholar
  17. 17.
    Dangl, J. L. 1992. The major histocompatibility complex à la carte: are there analogies to plant disease resistance genes on the menu? Plant J. 2:3–11.Google Scholar
  18. 18.
    Hodgkin, T., G. D. Lyon, and H. G. Dickinson. 1988. Recognition in flowering plants: A comparison of the Brassica self-incompatibility system and plant-pathogen interactions. New Phytol. 110:557–569.Google Scholar
  19. 19.
    Nasrallah, J. B. and M. E. Nasrallah. 1993. Cell-cell interactions during pollination in Brassica. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds. E. W. Nestor and D. P. S. Verma, pp. 15–21. Kluwer Academic. Publisher Amsterdam, Netherlands.Google Scholar
  20. 20.
    Lamb, C. J. 1994. Plant disease resistance genes in signal perception and transduction. Cell 76:419–422.PubMedGoogle Scholar
  21. 21.
    Bennetzen, J. L. and J. D. G. Jones. 1992. Approaches and progress in the molecular cloning of plant disease resistance genes. In Genetic Engineering, ed. J.K. Setlow. Plenum Press, New York. 14:99–124.Google Scholar
  22. 22.
    Ellis, J. G., G. J. Lawrence, W. J. Peacock and A. J. Pryor. 1988. Approaches to cloning plant genes conferring resistance to fungal pathogens. Annu. Rev. Phytopathoelle. 26:245–63.Google Scholar
  23. 23.
    Tanksley, S. D., M. W. Ganal, and G. B. Martin. 1994. Chromosome landing: A paradigm for map-based cloning in species with large genomes. Trends Genet. 11:63–68.Google Scholar
  24. 24.
    Young, N. D. 1990. Potential applications of map-based cloning to plant pathology. Physiol. Mol. Plant Pathol. 37:81–94.Google Scholar
  25. 25.
    Wolpert, T. J. and V. Macko. 1989. Specific binding of victorin to a 100-kDa protein from oats. Proc. Natl. Acad. Sci. USA 86:4092–4096.PubMedGoogle Scholar
  26. 26.
    Wolpert, T. J., D. A. Navarre, D. L. Moore, and V. Macko. 1994. Identification of the 100-kD victorin binding protein from oats. Plant Cell 6:1145–1155.PubMedGoogle Scholar
  27. 27.
    Frech, G. C, A. M. J. VanDongen, G. Schuster, A. M. Brown, and R. H. Joho. 1989. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340:642–645.PubMedGoogle Scholar
  28. 28.
    Staskawicz, B., J. D. Dahlbeck, and N. T. Keen. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.). Merr. Proc. Natl Acad, Sci. USA 81:6024–6028Google Scholar
  29. 29.
    Gabriel, D. W., A. Burges, and G. R. Lazo. 1986. Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proc. Natl Acad. Sci. USA 83:6415–6419.PubMedGoogle Scholar
  30. 30.
    Bechtold, M., J. Ellis, and G. Pelletier. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad Sci. Paris 316:1194–1199.Google Scholar
  31. 31.
    Lazo, G. R., P. A. Stein and R. A. Ludwig. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967.Google Scholar
  32. 32.
    Balcells, L., J. Swinborne, and G. Coupland. 1991. Transposons as tools for the isolation of plant genes. Trends Biotech. 9:31–37Google Scholar
  33. 33.
    Johal, G. S., and S. P. Briggs. 1992. Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987.PubMedGoogle Scholar
  34. 34.
    Baker, B., J. Schell, H. Lorz and N. Federoff. 1986. Transposition of the maize controlling element “activator” in tobacco. Proc. Natl. Acad. Sci. USA 83:4844–4848.PubMedGoogle Scholar
  35. 35.
    Rommens, J. M., M. C. Lannuzzi, B.-S. Kerem, M. L. Drumm, G. Melmer, M. Dean, R. Rozmahel, J. L. Cole, D. Kennedy, N. Hidaka, M. Zsiga, M. Buchwald, J. R. Riordan, L.-C. Tsui, F. S. Collins. 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 45:1059–1065.Google Scholar
  36. 36.
    Wicking, C. and B. Williamson. 1991. From linked marker to gene. Trends Genet. 7:288–293.PubMedGoogle Scholar
  37. 37.
    Silverman, G. A., R. D. Ye, K. M. Pollock, J. E. Sadler, and S. J. Korsmeyer. 1989. Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc. Natl. Acad. Sci. USA 86:7485–7489.PubMedGoogle Scholar
  38. 38.
    Wallace, M. R., D. A. Marchuk, L. B. Andersen, R. Letcher, H. M. Odeh, A. M. Saulino, J. W. Fountain, A. Brereton, J. Nicholson, A. L. Mitchell, B. H. Brownstein, F. S. Collins. 1990. Type 1 neurofibromatosis gene: Identification of a large transcript disrupted in three NF1 patients. Science 249:181–186.PubMedGoogle Scholar
  39. 39.
    Ioannou, P. A., C. T. Amemiya, J. Games, P. M Kroisel, H. Shizuya, C. Chen, M. A. Batzer, and P. J. de Jong. 1994. A new bacteriophage Pl-derived vector for the propagation of large human DNA fragments. Nature Genet. 6:84–89.PubMedGoogle Scholar
  40. 40.
    Arondel, V., B. Lemieux, I. Hwang, S. Gibson, H. M. Goodman and C. R. Somerville. 1992. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355.Google Scholar
  41. 41.
    Martin G. B., S. H. Brommonschenkel, J. Chunwongse, A. Frary, M. W. Ganal, R. Spivey, T. Wu, E. D. Earle, and S. D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance gene in tomato. Science 262:1432–1436.PubMedGoogle Scholar
  42. 42.
    Martin, G. B., J. G. K. Williams, and S. D. Tanksley. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato using random primers and near-isogenic lines. Proc. Natl. Acad. Sci. USA 88:2336–2340.PubMedGoogle Scholar
  43. 43.
    Michelmore, R. W., I. Paran, and R. V. Kesseli. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88:9828–9832PubMedGoogle Scholar
  44. 44.
    Young, N. D., D. Zamir, M. W. Ganal and S. D. Tanksley. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120:579–585.PubMedGoogle Scholar
  45. 45.
    Lai, E. 1991. Pulsed field gel electrophoresis: An overview. New England Biolabs Transcript 3:1–3.Google Scholar
  46. 46.
    Ganal, M. W. and S. D. Tanksley. 1989. Analysis of tomato DNA by pulsed field gel electrophoresis. Plant Mol. Biol. Rep. 7:17–27.Google Scholar
  47. 47.
    Olson, M. V. 1989. Pulsed-field gel electrophoresis. In Genetic Engineering, ed. J. K. Setlow, pp. 183–227. Plenum New York.Google Scholar
  48. 48.
    Burke, D., G. Carle and M. Olson. 1987. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812.PubMedGoogle Scholar
  49. 49.
    Martin, G. B., M. W. Ganal, and S. D. Tanksley. 1992. Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol. Gen. Genet. 233:25–32.PubMedGoogle Scholar
  50. 50.
    Shizuya, H., B. Birren, U.-J. Kim, V. Mancino, T. Slepak, Y. Tachiiri, and M. Simon. 1992. Cloning and stable maintenace of 300-kilobase-pair fragments of human DNA in Escherichia coli using a F-factor-based vector. Proc. Natl. Acad. Sci. USA 89:8794–8797.PubMedGoogle Scholar
  51. 51.
    Ecker, J. R. 1990. PFGE and YAC analysis of the Arabidopsis genome. Methods: A Companion to Methods in Enzymology. 1:186–194.Google Scholar
  52. 52.
    Zabeau, M. 1993. Amplified Fragment Length Polymorphism (AFLPs). European Patent Application 92402629.7Google Scholar
  53. 53.
    McCormick, S., J. Niedermeyer, J. Fry, A. Barnason, R. Horsch, and R. Fraley. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5:81–84.Google Scholar
  54. 54.
    Bent, A. F., B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung, and B. J. Staskawicz. 1994. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860.PubMedGoogle Scholar
  55. 55.
    Mindrinos, M., F. Katagiri, G. L. Yu, and F. M. Ausubel. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099.PubMedGoogle Scholar
  56. 56.
    Lawrence, G. J., J. G. Ellis, and E. J. Finnegan. 1994. Cloning a rust-resistance gene in flax. In Advances in Molecular Genetics of Plant-Microbe Interactions, vol 3. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 303–306.Google Scholar
  57. 57.
    Jones, D. A., C. M. Thomas, K. E. Hammond-Kosack, P. J. Balint-Kurti, and J. D. G. Jones. 1994. Isolation of the tomato Cf-9 gene for resistance to Clados-porium fulvum by transposon tagging. Science 266:789–793.PubMedGoogle Scholar
  58. 58.
    Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr, and B. Baker. 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115.PubMedGoogle Scholar
  59. 59.
    de Wit, P. J. G. M. 1992. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu. Rev. Phytopathol 30:391–418.PubMedGoogle Scholar
  60. 60.
    van Kan, J. A. L., G. F. J. M. van den Ackerveken, and P. G. J. M. de Wit. 1991. Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interactions, 4:52–59Google Scholar
  61. 61.
    Van den Ackerveken, G. F. J. M., J. A. L. Van Kan, and R. J. G. M. De Wit. 1992. Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J. 2:359–366.PubMedGoogle Scholar
  62. 62.
    Jones, D. A., M. J. Dickinson, P. Balint-Kurti, M. Dixon, and J. D. G. Jones. 1993. Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol. Plant-Microbe Interactions, 6:348–357.Google Scholar
  63. 63.
    Dickinson, M. J., D. A. Jones and J. D. G. Jones. 1993. Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol. Plant-Microbe Interactions, 6:341–347.Google Scholar
  64. 64.
    Hammond-Kosack, K., K. Harrison, and J. D. G. Jones. 1994. Developmentally regulated cell death on expression of the fungal avirulence gene avr9 in tomato seedlings carrying the disease resistance gene Cf-9. Proc. Natl. Acad. Sci. USA. 91:10445:10449.PubMedGoogle Scholar
  65. 65.
    Mayo, G. M. E. and K. W. Shepherd. 1980. Studies of genes controlling specific host-parasite interactions in flax and its rust. Heredity 44:211–227.Google Scholar
  66. 66.
    Lawrence, G., J. Finnegan, and J. Ellis. 1993. Instability of the L6 gene for rust resistance in flax is correlated with the presence of a linked Ac element. Plant J. 4:659–669.PubMedGoogle Scholar
  67. 67.
    Davis, K. R. 1992. Arabidopsis thaliana as a model host for studying plant-pathogen interactions. Molecular Signals in Plant-Microbe Communications, ed. by D. P. S. Verma, pp. 394–406. CRC Press, Boca Raton, FL.Google Scholar
  68. 68.
    Van Montagu, M., C. Dean, R. Favell, H. Goodman, M. Koornnef, E. Meyerowitz, J. Peacock, Y. Shimura, and C. Somerville. 1992. The multinational coordinated Arabidopsis thaliana genome research project. Progress Report: Year Two, NSF 92–112, National Science Foundation, Washington.Google Scholar
  69. 69.
    Jones, J. B., J. P. Jones, R. E. Stall, and T. A. Zitter. 1991. Compendium of tomato diseases, pp. 1–74. American Phytopath. Soc, MN. American Phytopathological Society, St. Paul, MN.Google Scholar
  70. 70.
    Pitblado, R. E. and B. H. MacNeill. 1983. Genetic basis of resistance to Pseudomonas syringae pv. tomato in field tomatoes. Can. J. Plant Path. 5:251–255.Google Scholar
  71. 71.
    Pitblado, R. E., B. H. MacNeill, and E. A. Kerr. 1984. Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. Can. J. Plant Patho. 6:48–53Google Scholar
  72. 72.
    Watterson, J. C. 1986. Diseases. In The Tomato Crop—A Scientific Basis for Improvement, pp. 443–484. Chapman & Hall, London.Google Scholar
  73. 73.
    Hauge, B. M., S. M. Hanley, S. Cartinhour, J. M. Cherry, H. M. Goodman, M. Koornneef, P. Stam, C. Chang, S. Kempin, L. Medrano, and E. M. Meyerowitz. 1993. An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant J. 3:745–754.Google Scholar
  74. 74.
    Reiter, R. S., J. G. K. Williams, K. A. Feldmann, J. A. Rafalski, S. V. Tingey, and R. A. Scolnik. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Genetics 89:1477–1481.Google Scholar
  75. 75.
    Anonymous. 1990. Spectrum offers bacterial speck resistant hybrids. Calif. Tomato Grower 33:27.Google Scholar
  76. 76.
    Martin, G. B., M. C. de Vicente, and S. D. Tanksley. 1993. High-resolution linkage analysis and physical characterization of the Pto bacterial resistance locus in tomato. Mol. Plant-Microbe Interactions 6:26–34.Google Scholar
  77. 77.
    Laterrot, H. 1985. Susceptibility of Pto plants to Lebaycid insecticide: A tool for plant breeders? Tomato Genet. Coop. Rep. 35:6.Google Scholar
  78. 78.
    Laterrot, H. and A. Moretti. 1989. Linkage between Pto and susceptibility to fenthion. Tomato Genet. Coop. Rep. 39:21–22.Google Scholar
  79. 79.
    Martin, G. B., A. Frary, T. Wu, S. Brommonschenkel, J. Chunwongse, E. D. Earle, S. D. Tanksley. 1994. A member of the Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552.PubMedGoogle Scholar
  80. 80.
    Kunkel, B. N., A. F. Bent, D. Dahlbeck, R. W. Innes, and B. J. Staskawicz. 1993. RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell 5:865–875.PubMedGoogle Scholar
  81. 81.
    Yu, G.-L., F. Katagiri, and F. M. Ausubel. 1993. Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol. Plant-Microbe Interactions 6:434–443.Google Scholar
  82. 82.
    Giovannoni, J. J., R. A. Wing, M. W. Ganal, S. D. Tanksley. 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 19:6553–6558PubMedGoogle Scholar
  83. 83.
    Bennetzen, J. L., S. H. Hulbert, and P. C. Lyons. 1991. Genetic fine structure analysis of a maize disease-resistance gene. In Molecular Strategies of Pathogens and Host Plants, pp. 177–188. Springer-Verlag, New York.Google Scholar
  84. 84.
    Hott, T. W., S. H. Hulbert, and R. W. Michelmore. 1989. Genetic analysis of the gene-for-gene interaction between lettuce (Lactuca sativa) and Bremia lactucae. Phytopathol. 79:888–897.Google Scholar
  85. 85.
    Michelmore, R. W., P. A. Anderson, H. Witsenboer, R. V. Kesseli, I. Paran, D. M. Francis, and O. Ochoa. 1993. Molecular markers and genome analysis in the manipulation of lettuce downy mildew. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds. E. W. Nester and D. P. S. Verma, pp. 469–475. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  86. 86.
    Wise, R. P. and A. H. Ellingboe. 1985. Fine structure and instability of the Ml-a locus in barley. Genetics 111:113–130.PubMedGoogle Scholar
  87. 87.
    Yoshimura, A., T. W. Mew, G. S. Khush, and T. Omura. 1983. Inheritance of resistance to bacterial blight in rice cultivar Cas209. Phytopathology. 73:1409–1412.Google Scholar
  88. 88.
    Ohm, H. W., H. C. Sharma, F. L. Patterson, R. H. Ratcliffe, and M. Obanni. 1994. Genes for resistance to Hessian fly associated with wheat chromosome 5A. Crop Sci. (in press).Google Scholar
  89. 89.
    Patterson, F. L. and R. L. Gallun. 1977. Linkage in wheat of the H3 and H6 genetic factors for resistance to Hessian fly. J. Hered 68:293–296.Google Scholar
  90. 90.
    Williamson, V. M., I. Kaloshian, and W. H. Lange. 1994. An aphid resistance gene is tightly linked to the nematode resistance gene Mi. In Abstracts, Tomato Molecular Biology Symposium, Wageningen, Netherlands. Book of Abstracts, p. 11.Google Scholar
  91. 91.
    Mcintosh, R. A. 1977. Nature of induced mutations affecting disease resistance reaction in wheat. In Induced Mutations Against Plant Diseases, Symposium Proceedings, pp. 553–563. International Atomic Energy Agency, Vienna, Austria.Google Scholar
  92. 92.
    Carland, F. M. and B. J. Staskawicz. 1993. Genetic characterization of the Pto locus of tomato: Semi-dominance and cosegregation of resistance to Pseudomonas syringae pathovar tomato and sensitivity to the insecticide fenthion. Mol. Gen. Genet. 239:17–27.PubMedGoogle Scholar
  93. 93.
    Tanksley, S. D., M. W. Ganal, J. P. Prince, M. C. de Vicente, M. W. Bonierbale, P. Broun, T. M. Fulton, J. J. Giovanonni, S. Grandillo, G. B. Martin, R. Mes-seguer, J. C. Miller, L. Miller, A. H. Paterson, O. Pineda, M. S. Roder, R. A. Wing, W. Wu, and N. D. Young. 1992. High density molecular maps of the tomato and potato genomes. Genetics 132:1141–1160.PubMedGoogle Scholar
  94. 94.
    Ohno, S. 1970. Evolution by Gene Duplication. Springer, New York.Google Scholar
  95. 95.
    Jeffreys, A. J. 1982. Evolution of globin genes. In Genome Evolution, eds. G.A. Dover, and R. B. Flavell, pp. 156–176. Academic. Press, New York.Google Scholar
  96. 96.
    Maeda, N. and O. Smithies. 1986. The evolution of multigene families: Human haptoglobin genes. Annu. Rev. Genet. 20:81–108.PubMedGoogle Scholar
  97. 97.
    Bennetzen, J. L., M. M. Qin, S. Ingels, and A. H. Ellingboe. 1988. Allele-specific and mutator-associated instability at the Rpl disease-resistance locus of maize. Nature 332:369–370.Google Scholar
  98. 98.
    Keen, N. T., S. Tamaki, D. Kobayashi, D. Gerhold, M. Stayton, H. Shen, S. Gold, J. Lorang, H. Thordal-Christensen, D. Dahlbeck, and B. Staskawicz. 1990. Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol. Plant-Microbe Interactions 3:112–121.Google Scholar
  99. 99.
    Keen, N. T. and R. I. Buzzell. 1991. New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: Evidence that one of them interacts with a bacterial elicitor. Theor. Appl. Genet. 81:133–138Google Scholar
  100. 100.
    Midland, S. L., N. T. Keen, J. J. Sims, M. M. Midland, M. M. Stayton, V. Burton, M. J. Smith, E. P. Mazzola, K J. Graham, and J. Clardy. 1993. The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. tomato. J. Org. Chem. 58:2940–2945.Google Scholar
  101. 101.
    Salmerón, J. M., and B. J. Staskawicz. 1993. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol Gen. Genet. 239:6–16.PubMedGoogle Scholar
  102. 102.
    Dong, X., M. Mindrinos, K. R. Davis, and F. M. Ausubel. 1991. Induction of Arabidopsis defense genes by virulent and avirulence Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72.PubMedGoogle Scholar
  103. 103.
    Whalen, M. C, R. W. Innes, A. F. Bent, and B. J. Staskawicz. 1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59PubMedGoogle Scholar
  104. 104.
    Padgett, H. S. and R. N. Beachy. 1993. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5:577–586.PubMedGoogle Scholar
  105. 105.
    Brown, I., J. Mansfield, I. Irlam, J. Conrads-Strauch, and U. Bonas. 1993. Ultrastructure of interactions between Xanthomonas campestris pv. vesicatoria and pepper, including immunocytochemical localization of extracellular polysaccharides and the AvrBs3 protein. Mol. Plant-Microbe Interactions 6:376–386.Google Scholar
  106. 106.
    Meeley, R. B., G. S. Johal, S. P. Briggs, and J. D. Walton. 1992. A biochemical phenotype for a disease resistance gene of maize. Plant Cell 4:71–77.PubMedGoogle Scholar
  107. 107.
    Buss, J. E., M. P. Kamps, K. Gould, and B. M. Sefton. 1986. The absence of myristic acid decreases membrane binding of $60scr but does not affect tyrosine protein kinase activity. J. Virol. 58:468–474.PubMedGoogle Scholar
  108. 108.
    Tourvieille, B., S. D. Gorman, E. H. Field, T. Hunkapiller, and J. R. Parnés. 1986. Isolation and sequence of L3T4 complementary DNA clones: Expression in T cells and brain. Science 234:610–614.PubMedGoogle Scholar
  109. 109.
    Veillette, A., M. A. Bookman, E. M. Horak and J. B. Bolen. 1988. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55:301.PubMedGoogle Scholar
  110. 110.
    Keppler, L. D., C. J. Baker, and M. M. Atkinson. 1989. Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology. 79:974–978.Google Scholar
  111. 111.
    Lamb, C. J., M. A. Lawton, M. Dron, and R. A. Dixon. 1989. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56:215–224.PubMedGoogle Scholar
  112. 112.
    Sutherland, M. W. 1991. The generation of oxygen radicals during host responses to plant infection. Physiol. Mol Plant Pathol. 39:79–93.Google Scholar
  113. 113.
    Ward, E. R., S. J. Uknes, S. C. Williams, S. S. Dincher, D. L. Wiederhold, D. C. Alexander, P. Ahl-Goy, J. P. Metraux, and J. A. Ryals. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 3:1085–1094.PubMedGoogle Scholar
  114. 114.
    Malamy, J. and D. F. Klessig. 1992. Salicylic acid and plant disease resistance. Plant J. 2:643–654.Google Scholar
  115. 115.
    Baker, C. J., E. W. Orlandi, and N. M. Mock. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol. 102:1341–1344.PubMedGoogle Scholar
  116. 116.
    Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854–860Google Scholar
  117. 117.
    Uknes, S., B. Mauch-Mani, M. Moyer, S. Potter, S. Williams, S. Dincher, D. Chandler, A. Slusarenko, E. Ward, and J. Ryals. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645–656.PubMedGoogle Scholar
  118. 118.
    Rasmussen, J. B., R. Hammerschmidt, and M. N. Zook. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol. 97:1342–1347.PubMedGoogle Scholar
  119. 119.
    Loh, Y.-T. and G. B. Martin. 1995. The disease resistance gene Pto and the fenthion sensitivity gene Fen are closely related, functional protein kinases. Proc. Natl Acad. Sci. USA (in press)Google Scholar
  120. 120.
    Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.PubMedGoogle Scholar
  121. 121.
    Farmer, E. E., G. Pearce, and C. A. Ryan. 1989. In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor. Proc. Natl Acad Sci. USA 86:1539–1542.PubMedGoogle Scholar
  122. 122.
    Felix, G., D. G. Grosskopf, M. Regenass, and T. Boller. 1991. Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc. Natl. Acad. Sci. USA 88:8831–8834.PubMedGoogle Scholar
  123. 123.
    Raz, V. and R. Fluhr. 1993. Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5:523–530.PubMedGoogle Scholar
  124. 124.
    ÔBrien, R. D. 1967. Organophosphates: Chemistry and Inhibitory Activity. In Insecticides, Action and Metabolism, pp. 39–41. Academic Press, New York.Google Scholar
  125. 125.
    Worthing, C. R. 1979. The Pesticide Manual: A World Compendium, 6th ed. pp. 262–265. The British Crop Protection Council, London, England.Google Scholar
  126. 126.
    Chang, C, G. E. Schaller, S. E. Patterson, S. F. Kwok, E. M. Meyerowitz, and A. B. Bleecker. 1992. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell 4:1263–1271.PubMedGoogle Scholar
  127. 127.
    Freialdenhoven, A., B. Scherag, K. Hollricher, D. B. Collinge, H. Thordal-Christensen, and P. Schulze-Lefert. 1994. Nar-1 and Nar-2, two loci required for Mla-72-specified race-specific resistance to powdery mildew in barley. Plant Cell 6:983–994.PubMedGoogle Scholar
  128. 128.
    Hammond-Kosack, K. E., D. A. Jones, and J. D. G. Jones. 1994. Identification of two genes required in tomato for full Cf-9 dependent resistance to Cladosporium fulvum. Plant Cell 6:361–374.PubMedGoogle Scholar
  129. 129.
    Salmeron, J. M., S. J. Barker, F. M. Carland, A. Y. Mehta, and B. J. Staskawicz. 1994. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6:511–520.PubMedGoogle Scholar
  130. 130.
    Chien, C.-T., P. L. Bartel, R. Sternglantz, and S. Fields. 1991. The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. USA 88:9578–9582.PubMedGoogle Scholar
  131. 131.
    Ronald, P. C, J. M. Salmerón, F. M. Carland, and B. J. Staskawicz. 1992. The cloned avirulence gene avrPto induces disease resistance in tomato cultivare containing the Pto resistance gene. J. Bacteriol. 174:1604–1611.PubMedGoogle Scholar
  132. 132.
    Hille, J., E. A. van der Biezen, B. Overduin, J. Stuurman, F. L. W. Takken, L. Mesbah, D. Giannino, H. J. J. Nijkamp, and M. J. J. van Haaren 1994. Molecular genetic characterisation of the fungal disease resistance locus Asc in tomato. In Tomato Molecular Biology Symposium, Book of Abstracts. Wageningen, Netherlands.Google Scholar
  133. 133.
    Witsenboer, H. M. A., E. G. van de Griend, J. B. Tiersma, H. J. J. Nijkamp, and J. Hille. 1989. Tomato resistance to Alternaria stem canker: Localization in host genotypes and functional expression compared to non-host resistance. Theor. Appl. Genet. 78:457–462.Google Scholar
  134. 134.
    Tai, T. H., D. Dahlbeck, M. Whalen, R. E. Stall, and B. J. Staskawicz. 1994. Molecular genetic analysis of the region containing the Bs2 resistance gene in pepper. In Abstracts, Seventh International Symposium on Molecular Plant-Microbe Interaction. University of Edinburgh, Scotland. June 26-July 1, 1994. Abstracts 290.Google Scholar
  135. 135.
    Sarfatti, M., J. Katan, R. Fluhr and D. Zamir. 1989. An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor. Appl. Genet. 78:755–759.Google Scholar
  136. 136.
    Segal, G., M. Sarfatti, M. A. Schaffer, N. Ori, D. Zamir and R. Fluhr. 1992. Correlation of genetic and physical structure in the region surrounding the I2 Fusarium oxysporum resistance locus in tomato. Mol. Gen. Genet. 231:179–185.PubMedGoogle Scholar
  137. 137.
    Chunwongse, J., T. B. Bunn, C. Crossman, J. Jiang, and S. D. Tanksley. 1994. Chromosomal localization and molecular marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor. Appl. Genet. 89:76–79.Google Scholar
  138. 138.
    Ho, J. Y., R. Weide, H. M. Ma, M. F. van Wordragen, K. N. Lambert, M. Koorneef, P. Zabel, and V. M. Williamson. 1992. The root-knot nematode resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes. Plant J. 2:971–982.PubMedGoogle Scholar
  139. 139.
    Messeguer, R., M. Ganal, M. C. de Vicente, N. D. Young, H. Bolkan, and S. D. Tanksley. 1991. High resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor. Appl. Genet. 82:529–536.Google Scholar
  140. 140.
    Klein-Lankhorst, R., P. Rietveld, B. Machiels, R. Verkerk, R. Weide, C. Geb-hardt, M. Koornneef, and P. Zabel. 1991. RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor. Appl. Genet. 81:661–667.Google Scholar
  141. 141.
    Hinze, K., R. D. Thompson, E. Ritter, F. Salamini, and P. Schulze-Lefert. 1991. Restriction fragment length polymorphism-mediated targeting of the ml-o resistance locus in barley (Hordeum vulgare). Proc. Natl. Acad. Sci. USA 88:3691–3695.PubMedGoogle Scholar
  142. 142.
    Hulbert, S. H. and J. L. Bennetzen. 1991. Recombination at the Rpl locus of maize. Mol. Gen. Genet. 226:377–382.PubMedGoogle Scholar
  143. 143.
    Debener, T., H. Lehnackers, M. Arnold, and J. L. Dangl. 1991. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1:289–302PubMedGoogle Scholar
  144. 144.
    Innes, R. W., S. R. Bisgrove, N. M. Smith, A. F. Bent, B. J. Staskawicz, and Y. C. Liu. 1993. Identification of a disease resistance locus in Arabidopsis that is functionally homologous to the RPG1 locus of soybean. Plant J. 4:813–820.PubMedGoogle Scholar
  145. 145.
    Parker, J. E., V. Szabo, B. J. Staskawicz, C. Lister, C. Dean, M. J. Daniels, and J. D. G. Jones. 1993. Phenotypic characterization and molecular mapping of the Arabidopsis thaliana locus RPP5, detennining disease resistance to Peronospora parasitica. Plant J. 4:821–831.Google Scholar
  146. 146.
    Tsuji, J., S. C. Somerville, and R. Hammerschmidt. 1991. Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol. Mol. Plant Pathol. 38:57–65.Google Scholar
  147. 147.
    Ganal, M. W., N. D. Young, and S. D. Tanksley. 1989. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol. Gen. Genet. 215:395–400.Google Scholar
  148. 148.
    Brommonschenkel, S. H., J. J. Cho, D. Custer, and S. D. Tanksley. 1995. Genetics and high-resolution RFLP mapping of tomato spotted wilt tospovirus (TSWV) resistance derived from L. pervianum. Mol. Plant-Microbe Interact, (in press).Google Scholar
  149. 149.
    Ronald, P. C, L. Abenes, B. Albano, S. McCouch, and S. D. Tanksley. 1992. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol. Gen. Genet. 236:113–120.PubMedGoogle Scholar
  150. 150.
    Newbury, H. J., E. A. B. Aitken, and J. A. Callow. 1993. Mutagenesis of a race-specific rust resistance gene in Antirrhinum majus using a transposon-tagging protocol. In Advances in Molecular Genetics of Plant-Microbe Interactions, eds. E. W. Nester and D. P. S. Verma, pp. 469–475. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Gregory B. Martin

There are no affiliations available

Personalised recommendations