Ultrasonic digital measuring methods

  • Štefan Kočiš
  • Zdenko Figura


An advantage of measuring methods exploiting ultrasonic waves is that they enable the direct accomplishment of a digital measurement without the need for conversion of an analog signal to a digital one by an analog-to-digital converter (ADC). In most applications, either the velocity of the ultrasonic wave or the time of flight of a wave over the measured distance is utilized. From a technological point of view, another advantage is that the propagation velocity of ultrasonic waves is many orders lower than that of electromagnetic waves. Because of this, less stringent demands are required of the transducers and the electronic circuits. On the other hand, the use of ultrasonic waves has certain drawbacks too, in particular the large dependence of the velocity of the ultrasonic waves on the parameters of the medium, and their high attenuation and scattering, especially in air.


Propagation Velocity Ultrasonic Wave Ultrasonic Pulse Ultrasonic Measuring Ultrasonic Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    MoritzW.E., ShreveP.L.MaceL.E.: Analysis of an Ultrasonic Spatial Locating System, IEEE Transactions on Instrumentation and Measurement, 25, 1976, No. 1, 43–50Google Scholar
  2. 4.2
    MerhautJ.: Teoretické základy elektroakustiky, Academia, Prague, 1985, 385p. (in Czech)1Google Scholar
  3. 4.3
    MorfeyC.L., HowellG.P.: Speed of Sound in Air as a Function of Frequency and Humidity, J. Acoust. Soc. Amer. 68, 1980, 1525–1527CrossRefGoogle Scholar
  4. 4.4
    ObrazJ.: Ultrazvuk v mĕřící technice, SNTL, Prague, 1984, 484p. (in Czech)2Google Scholar
  5. 4.5
    KayL.: Airborne Ultrasonic Imaging of a Robot Workspace, Sensor Review 5, 1985, No. 1, 8–12CrossRefGoogle Scholar
  6. 4.6
    AhrensU.: Solutions and Problems in Applications of Airborne Ultrasonic Sensors in Assembly- and Handling System, Robotersysteme I, 1985, No. 1, 17–20Google Scholar
  7. 4.7
    Commercial press: Prospectusses of Sonic Digitizers, SAC, (Science Accessories Corporation, Strattford, USA)Google Scholar
  8. 4.8
    ZeninV.J., MaslyukowV.A., SychV.P.: Ustroystvo dlya schityvania graficheskoi informacii, Pat. USSR No. 525976 (in Russian)3Google Scholar
  9. 4.9
    KočišŠ.: Improvement of Accuracy of Acoustical Digital Coordinate Measurement, Preprint, In: ACTA IMEKO 1979 (VIIIth World Congress IMEKO ′79), 409–414Google Scholar
  10. 4.10
    MoritzW.E., ShreveP.L.: A Microprocessor-Based Spatial-Locating System for Use with Diagnostic Ultrasound, Proc. IEEE, 64 (1976), No. 6, 966–974CrossRefGoogle Scholar
  11. 4.11
    KočišŠ.: Ultrasonic Pulse Method and its Application for Numerical Plane and Space Measurement, Elektrotechnický časopis, 35, 1984, No. 11, 480Google Scholar
  12. 4.12a
    PomeroyS.C., DixonH.J., WybrowM.D., KnightJ.A.G.: Ultrasonic Distance Measuring and Imaging Systems for Industrial Robots, Robot Sensors 2, Springer, 1986,Google Scholar
  13. 4.12b
    (see also: Pomeroy S.C., Dixon H.J., Wybrow M.D., Knight J.A.G.: Ultrasonic Distance Measuring and Imaging Systems for Industrial Robots, Robot Sensors 2 Robotics 3, 1987, 181–188)CrossRefGoogle Scholar
  14. 4.13
    UlrichM., LazaroS.: Why Ultrasonics for Noncontact Position Sensing, Instrumentation and Control Systems 5, 1992, No. 4, 39–42Google Scholar
  15. 4.14
    FigeroaF., BarbieriE.: An Ultrasonic Ranging System for Structural Vibration Measurement, IEEE Transactions on Instrumentation and Measurement 40, 1991, No. 4, 764–769CrossRefGoogle Scholar
  16. 4.15
    FiorilloA.S.: Design and Characterisation of a PVDF Ultrasonic Range Sensor, IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control 39, 1992, No. 6, 362–367CrossRefGoogle Scholar
  17. 4.16
    HicklingM., MarrinS.P.: The Use of Ultrasonics in Air, J. Acoust. Soc. Amer. 79, 1986, No. 4, 124–127CrossRefGoogle Scholar
  18. 4.17
    ShimokohbeA., MaS.: Ultrasonic Measurement of Three-Dimensional Coordinate, Preprint, In: Proc. XIth IMEKO World Congress, 441–447Google Scholar
  19. 4.18
    SanoS.: Mobility Aids for Blind, In: Electronic Devices for Rehabilitation, Chapman & Hall, London, 1985, 79Google Scholar
  20. 4.19
    TeshigawaraM., ShibataF., Teramoto: High Resolution (0.2 mm) and Fast Response (2 ms) Range Finder for Industrial Use in Air, In: Proc. IEEE Ultrason. Symp., 1989, 639–642CrossRefGoogle Scholar
  21. 4.20
    JoffeD.: Polaroid Ultrasonic Ranging Sensors in Robotic Application, Robotic Age, 1985, 23–30Google Scholar
  22. 4.21
    MoosbyE.G.: Practical Ultrasonic Thermometer, Ultrasonics 7, 1969, No. 1, 13–15CrossRefGoogle Scholar
  23. 4.22
    TasmanH.A., PatzoldE.E.: Ultrasonic Thermometer, 1978, U.S. Patent, No. 4.195.523Google Scholar
  24. 4.23
    Commercial press: Quartz Pressure Gauge, Typ 2811A, Hewlett-Packard, LtdGoogle Scholar

Copyright information

© Chapman & Hall and Ister Science Limited 1996

Authors and Affiliations

  • Štefan Kočiš
    • 1
  • Zdenko Figura
    • 2
  1. 1.Faculty of Electrical Engineering and Information TechnologySlovak Technical UniversityBratislavaSlovak Republic
  2. 2.SONO ElectricNové Mesto Nad VáhomSlovak Republic

Personalised recommendations