Skip to main content

Abstract

Nitric oxide NO• is part of several interconnected nitrogen cycles of varying global importance. The geochemical nitrogen cycle relates to atmospheric layers1 such as the thermosphere (> 110 km),2 the air-glow layer (85–110 km),3 the troposphere (2–15 km) and stratosphere (12–35 km).4–6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates DR. Cause of terrestrial nightglow continuum. Proc R Soc Lond A 1993; 443:227–237.

    Google Scholar 

  2. Sharma RD, Sun Y, Dalgarno A. Highly rotationally excited nitric oxide in the terrestrial thermosphere. Geophys Res Letters 1993; 20:2043–2045.

    CAS  Google Scholar 

  3. Mende SB, Swenson GR, Geller SP et al. Limb view spectrum of the earth’s airglow. J Geophys Res 1993; 98:117–125.

    Google Scholar 

  4. Johnson C, Henshaw J, Mclnnes G. Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming. Nature 1992; 355:69–71.

    CAS  Google Scholar 

  5. Kondo Y, Kitada T, Koike M et al. Nitric oxide and ozone in the free troposphere over the western pacific ocean. J Geophys Res 1993; 98:527–535.

    Google Scholar 

  6. Lelieveld J, Crutzen PJ. Role of deep cloud convection in the ozone budget of the troposphere. Science 1994;264:1759–1761.

    PubMed  CAS  Google Scholar 

  7. Remde A, Ludwig J, Meixner FX et al. A study to explain the emission of nitric oxide from a marsh soil. J Atmosph Chem 1993; 17:249–275.

    CAS  Google Scholar 

  8. Rondon A, Johansson C, Sanhueza E. Emission of nitric oxide from soils and termite nests in a trachypogon savanna of the Orinoco basin. J Atmosph Chem 1993; 17:293–306.

    CAS  Google Scholar 

  9. Valente RJ, Thornton FC. Emissions of NO from soil at a rural site in central Tennessee. J Geophys Res 1993; 98:745–753.

    Google Scholar 

  10. Williams EJ, Davidson EA. An inter-comparison of two chamber methods for the determination of emission of nitric oxide from soil. Atmosph Environ 1993; 27A:2107–2113.

    CAS  Google Scholar 

  11. Payne WJ. Denitrification. John Wiley & Sons, New York. 1981.

    Google Scholar 

  12. Zumft WG. The biological role of nitric oxide in bacteria. Arch Microbiol 1993; 160:253–264.

    PubMed  CAS  Google Scholar 

  13. Elofsson R, Carlberg M, Moroz L et al. Is nitric oxide (NO) produced by invertebrate neurones? NeuroReports 1993; 4:279–282.

    CAS  Google Scholar 

  14. Gelperin A. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 1994; 369:61–63.

    PubMed  CAS  Google Scholar 

  15. Radomski MW, Martin JF, Moncada S. Synthesis of nitric oxide by the haemocytes of the american horseshoe crab (Limulus polyphemus). Phil Trans Royal Soc Lond B 1991; 334:129–133.

    CAS  Google Scholar 

  16. Martinez A, Riveros-Moreno V, Polak JM et al. Nitric oxide (NO) synthase immunoreactivity in the starfish Marthasterias glacialis. Cell Tissue Res 1994; 275:599–603.

    CAS  Google Scholar 

  17. Ribeiro JMC, Hazzard JMH, Nussenzveig RH et al. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 1993; 260:539–541.

    PubMed  CAS  Google Scholar 

  18. Müller U, Buchner E. Histochemical localization of NADPH-diaphorase in the adult Drosophila brain. Is nitric oxide a neuronal messenger also in insects? Naturwissenschaften 1993; 80:524–526.

    PubMed  Google Scholar 

  19. Choi SK, Choi HK, Kadono-Okuda K et al. Occurence of novel types of nitric oxide synthase in the silkworm, Bombyx mori. Biochem Biophys Res Commun 1995; 207:452–459.

    PubMed  CAS  Google Scholar 

  20. Li ZS, Furness JB, Young HM et al. Nitric oxide synthase immunoreactivity and NADPH diaphorase enzyme activity in neurones of the gastrointestinal tract of the toad, Bufo marinus. Arch Histol Cytol 1992; 55:333–350.

    PubMed  CAS  Google Scholar 

  21. Holmqvist BI, Östholm T, Alm P, Ekström P. Nitric oxide synthase in the brain of a teleost. Neuroscience Letters 1994; 171:205–208.

    PubMed  CAS  Google Scholar 

  22. Chen Y, Rosazza JPN. A bacterial nitric oxide synthase from a Nocardia species. Biochem Biophys Res Commun 1994; 203:1251–1258.

    PubMed  CAS  Google Scholar 

  23. Werner-Felmayer G, Golderer G, Werner ER et al. Pteridine biosynthesis and nitric oxide synthase in Physarum polycephalum. Biochem J 1994; 304:105–111.

    PubMed  CAS  Google Scholar 

  24. Brooks SB, Lewis MJ, Dickerson RR. Nitric oxide emissions from the high-temperature viscous boundary layers of hypersonic aircraft within the stratosphere. J Geophys Res 1993; 98:755–760.

    Google Scholar 

  25. Goldenbaum GC, Dickerson RR. Nitric oxide production by lightning discharges. J Geophys Res 1993; 98:333–338.

    Google Scholar 

  26. Hoffman DJ, Solomon S. Ozone destruction through heterogeneous chemistry following the eruption of El Chicon. J Geophys Res 1989; 94:5029–5041.

    Google Scholar 

  27. Brasseur GP, Granier C, Walters S. Future changes in stratospheric ozone and the role of heterogeneous chemistry. Nature 1990; 348:626–628.

    CAS  Google Scholar 

  28. Rodriguez JM, Ko MKW, Sze ND. Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses. Nature 1991; 352:134–137.

    CAS  Google Scholar 

  29. Torres AL, Thompson AM. Nitric oxide in the equatorial pacific boundary layer: SAGA3 measurements. J Geophys Res 1993; 98:949–954.

    Google Scholar 

  30. Norman V, Keith CH. Nitrogen oxides in tobacco smoke. Nature 1965; 205:915–916.

    CAS  Google Scholar 

  31. Pryor WA. Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance. Free Rad Biol Med 1992; 13:659–676.

    PubMed  CAS  Google Scholar 

  32. Eiserich JP, Vossen V, O’Neill CA et al. Molecular mechanisms of damage by excess nitrogen oxides: nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett 1994; 353:53–56.

    PubMed  CAS  Google Scholar 

  33. Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline solution. Inorg Chem 1985; 24:3502–3504.

    CAS  Google Scholar 

  34. Wink DA, Darbyshire JF, Nims RW et al. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 1993; 6:23–27.

    PubMed  CAS  Google Scholar 

  35. Ford PC, Wink DA, Stanbury DM. Auto-oxidation of aqueous nitric oxide. FEBS Lett 1993; 326:1–3.

    PubMed  CAS  Google Scholar 

  36. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Rad Res Comms 1993; 18:195–199.

    CAS  Google Scholar 

  37. Padmaja S, Huie RE. The reaction of nitric oxide with organic peroxyl radicals. Biochem Biophys Res Commun 1993; 195:539–544.

    PubMed  CAS  Google Scholar 

  38. Kharitonov VG, Sundquist AR, Sharma VS. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem 1994; 269:5881–5883.

    PubMed  CAS  Google Scholar 

  39. Victorin K. Review of the genotoxicity of nitrogen oxides. Mutation Res 1994; 317:43–55.

    PubMed  CAS  Google Scholar 

  40. Henry Y, Ducrocq C, Drapier J-C et al. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitro-syl-iron-protein complexes in whole cells. Eur Biophys J 1991; 20:1–15.

    PubMed  CAS  Google Scholar 

  41. Ruggiero CE, Carrier SM, Antholine WE et al. Synthesis and structural and spectroscopic characterization of mononuclear copper nitrosyl complexes: models for nitric oxide adducts of copper proteins and copper-exchanged zeolites. J Am Chem Soc 1993; 115:11285–11298.

    CAS  Google Scholar 

  42. Arnold WP, Mittal CK, Katsuki S et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′-5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74:3203–3207.

    PubMed  CAS  Google Scholar 

  43. Murad F, Mittal CK, Arnold WP et al. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotides Res 1978; 9:145–158.

    CAS  Google Scholar 

  44. Craven PA, DeRubertis FR. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemoproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 1978; 253:8433–8443.

    PubMed  CAS  Google Scholar 

  45. Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of NO catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 1979; 254:8213–8222.

    PubMed  CAS  Google Scholar 

  46. Ignarro LJ, Edwards JC, Gruetter DY et al. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 1980; 110: 275–278.

    PubMed  CAS  Google Scholar 

  47. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288:373–376.

    PubMed  CAS  Google Scholar 

  48. Ignarro LJ, Buga GM, Wood KS et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84:9265–9269.

    PubMed  CAS  Google Scholar 

  49. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327:524–526.

    PubMed  CAS  Google Scholar 

  50. Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelets adhesion to vascular endothelium. Biochem Biophys Res Commun 1987; 148:1482–1489.

    PubMed  CAS  Google Scholar 

  51. Moncada S, Radomski MW, Palmer RMJ. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 1988; 37:2495–2501.

    PubMed  CAS  Google Scholar 

  52. Palmer RMJ, Rees DD, Ashton DS et al. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 1988; 153:1251–1256.

    PubMed  CAS  Google Scholar 

  53. Stuehr DJ, Gross SS, Sakuma I et al. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med 1989; 169:1011–1020.

    PubMed  CAS  Google Scholar 

  54. Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30:535–560.

    PubMed  CAS  Google Scholar 

  55. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 1991; 41:485–490.

    PubMed  CAS  Google Scholar 

  56. Moncada M, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38:1709–1715.

    PubMed  CAS  Google Scholar 

  57. Moncada S, Palmer RMK, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109–142.

    PubMed  CAS  Google Scholar 

  58. Green LC, Ruiz de Luzuriaja K, Wagner DA et al. Nitrate biosynthesis in man. Proc Natl Acad Sci USA 1981; 78:7764–7768.

    PubMed  CAS  Google Scholar 

  59. Wagner DA, Young VR, Tannenbaum SR. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci USA 1983; 80:4518–4531.

    PubMed  CAS  Google Scholar 

  60. Miwa M, Stuehr DJ, Marietta et al. Nitrosation of amines by stimulated macrophages. Carcinogenesis 1987; 7:955–958.

    Google Scholar 

  61. Hibbs JB, Taintor RR, Vavrin Z et al. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157:87–94.

    PubMed  CAS  Google Scholar 

  62. Marietta MA. Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1988; 1:249–257.

    Google Scholar 

  63. Marietta MA, Yoon PS, Iyengar R et al. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988; 27:8706–8711.

    Google Scholar 

  64. Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989; 169:1543–1555.

    PubMed  CAS  Google Scholar 

  65. Hibbs JB, Taintor RR, Vavrin Z et al. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA, eds. Nitric oxide from L-arginine: a bioregulatory system. Amsterdam: Elsevier Science Publishers B.V., 1990; 189–223.

    Google Scholar 

  66. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6:3051–3064.

    PubMed  CAS  Google Scholar 

  67. Stuehr DJ, Griffith OW. Mammalian nitric oxide synthases. Adv Enzymol 1992; 65:287–346.

    PubMed  CAS  Google Scholar 

  68. Averill BA, Tiedje JM. The chemical mechanism of microbial denitrification—a hypothesis. FEBS Lett 1982; 261:8–11.

    Google Scholar 

  69. Kim CH, Hollocher TC. 15N tracer studies on the reduction of nitrite by purified dis-similatory nitrite reductase of Pseudomonas aeruginosa. Evidence for direct production of N2O without free NO as an intermediate. J Biol Chem 1983; 258:4861–4863.

    PubMed  CAS  Google Scholar 

  70. Bessières P, Henry Y. Stoichiometry of nitrite reduction catalyzed by Pseudomonas aeruginosa nitrite-reductase. Biochimie 1984; 66:313–318.

    PubMed  Google Scholar 

  71. Henry Y, Bessières P. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 1984; 66:259–289

    PubMed  Google Scholar 

  72. Brittain T, Blackmore R, Greenwood C et al. Bacterial nitrite-reducing enzymes. Eur J Biochem 1992; 209:793–802.

    PubMed  CAS  Google Scholar 

  73. Ye RW, Averill BA, Tiedje JM. Denitrification: production and consumption of nitric oxide. Applied Environm microbiol 1994; 60:1053–1058.

    CAS  Google Scholar 

  74. Luckey TD. Introduction to intestinal microecology. Am J Clin Nutr 1972; 25:1292–1294.

    PubMed  CAS  Google Scholar 

  75. Bonnett R, Chandra S, Charalambides AA et al. Nitrosation and nitrosylation of haemoproteins and related compounds. Part 4. Pentaco-ordinate nitrosylprotohaem as the pigment of cooked cured meat. Direct evidence from ESR spectroscopy. J Chem Soc Perkin I 1980; 1980:1706–1710.

    Google Scholar 

  76. Reddy D, Lancaster JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 1983; 221:769–770.

    PubMed  CAS  Google Scholar 

  77. Benjamin N, O’Driscoll F, Dougall H et al. Stomach NO synthesis. Nature 1994; 368:502.

    PubMed  CAS  Google Scholar 

  78. Iqbal ZM, Dahl K, Epstein SS. Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science 1980; 207:1475–1477.

    PubMed  CAS  Google Scholar 

  79. Iyengar R, Stuehr DJ, Marietta MA. Macrophages synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 1987; 84:6369–6373.

    PubMed  CAS  Google Scholar 

  80. Challis BC, Fernandes MHR, Glover BR et al. Formation of diazopeptides by nitrogen oxides. In: Bartsch H, O’Neill IR, Schulte-Hermann R, eds. Relevance of N-nitroso compounds to human cancer: exposures and mechanisms. IARC Scientific Publications No 84, Lyon, France, 1987; 308–314.

    Google Scholar 

  81. Mirvish SS, Ramm MD, Babcook DM et al. Lipidic nitrosating agents produced from atmospheric nitrogen dioxide and a nitrosamine produced in vivo from amyl nitrite. In: Bartsche H, O’Neill IK, Schulte-Hermann R, eds. Relevance of N-nitroso Compounds to Human Cancer: Exposures and Mechanisms. I ARC Scientific Publications No 84, Lyon, France, 1987; 315–318.

    Google Scholar 

  82. Tannenbaum SR. Endogenous formation of N-nitroso compounds: a current perspective. In: Bartsch H, O’Neill IK, Schulte-Hermann R, eds. Relevance of N-nitroso Compounds to Human Cancer: Exposures and Mechanisms. I ARC Scientific Publications No 84, Lyon, France, 1987; pp 292–296.

    Google Scholar 

  83. Bartsch H, Ohshima H, Pignatelli B. Inhibitors of endogenous nitrosation mechanisms and implications in human cancer prevention. Mutation Res 1988; 202:307–324.

    PubMed  CAS  Google Scholar 

  84. Ohshima H, Tsuda M, Adachi H et al. L-arginine-dependent formation of N-nitro-samines by the cytosol of macrophages activated with lipopolysaccharide and interferon-γ. Carcinogenesis 1991; 12:1217–1220.

    PubMed  CAS  Google Scholar 

  85. Esumi H, Tannenbaum SR. U.S.-Japan cooperative cancer research program: seminar on nitric oxide synthase and carcinogenesis. Cancer Res 1994; 54:297–301.

    PubMed  CAS  Google Scholar 

  86. Haswell-Elkins MR, Satarug S, Tsuda M et al. Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutation Res 1994; 305:241–252.

    PubMed  CAS  Google Scholar 

  87. Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation Res 1994; 305:253–264.

    PubMed  CAS  Google Scholar 

  88. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMD A receptors suggests role as intercellular messenger in the brain. Nature 1988; 336:385–388.

    PubMed  CAS  Google Scholar 

  89. Knowles RG, Palacios M, Palmer RMJ et al. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989; 86:5159–5162.

    PubMed  CAS  Google Scholar 

  90. Gaily JA, Montague PR, Reeke GN et al. The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990; 87:3547–3551.

    Google Scholar 

  91. Snyder SH. Nitric oxide and neurons. Current Opinion in Neurobiol 1992; 2:323–327.

    CAS  Google Scholar 

  92. Snyder SH. Nitric oxide: first in a new class of neurotransmitters? Science 1992; 257:494–496.

    PubMed  CAS  Google Scholar 

  93. Lipton SA, Choi Y-B, Pan Z-H et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993; 364:626–632.

    PubMed  CAS  Google Scholar 

  94. Henry Y, Lepoivre M, Drapier J-C et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993; 7:1124–1134.

    PubMed  CAS  Google Scholar 

  95. Henry YA, Singel DJ. Metal-nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In: Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. John Wiley and Sons, 1996:357–372.

    Google Scholar 

  96. Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7:349–360.

    PubMed  CAS  Google Scholar 

  97. Enemark JH, Feltham RD. Stereochemical control of valence and its application to the reduction of coordinated NO and N2. Proc Natl Acad Sci USA 1972; 69:3534–3536.

    PubMed  CAS  Google Scholar 

  98. Bottomley F, Brooks WVF, Clarkson SG et al. Electrophilic behaviour of the coordinated nitrosyl cation. J Chem Soc Comm 1973; 1973:919–920.

    Google Scholar 

  99. McCleverty JA. Reactions of nitric oxide coordinated to transition metals. Chem Rev 1979; 79:53–76. 100. Koppenol WH, Moreno JJ, Pryor WA et al. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992; 5:834–842.

    Google Scholar 

  100. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258:1898–1902.

    PubMed  CAS  Google Scholar 

  101. Richter-Addo GB, Legzdins P. Metal nitrosyls. Oxford University Press, Oxford, UK, 1992.

    Google Scholar 

  102. Bonner FT, Hughes MN. No lack of NO activity. Science 1993; 260:145–146.

    PubMed  CAS  Google Scholar 

  103. Foubert L, Fleming B, Latimer R et al. Safety guidelines for use of nitric oxide. Lancet 1992; 339:1615–1616.

    PubMed  CAS  Google Scholar 

  104. Bouchet M, Renaudin M-H, Raveau C et al. Safety requirement for use of inhaled nitric oxide in neonates. Lancet 1993; 341:968–969.

    PubMed  CAS  Google Scholar 

  105. Laguenie G, Berg A, Saint-Maurice J-P et al. Measurement of nitrogen dioxide formation from nitric oxide by chemiluminescence in ventilated children. Lancet 1993; 341:969.

    PubMed  CAS  Google Scholar 

  106. Miller OI, Celermajer DS, Deanfield JE et al. Guidelines for the safe administration of inhaled nitric oxide. Arch Disease Childhood 1994; 70:F47–F49.

    CAS  Google Scholar 

  107. Rossaint R, Falke KJ, Lopez F et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Eng J Med 1993; 328:399–405.

    CAS  Google Scholar 

  108. Gustafsson LE, Leone AM, Persson MG et al. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991; 181:852–857.

    PubMed  CAS  Google Scholar 

  109. Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 1993; 6:1368–1370.

    PubMed  CAS  Google Scholar 

  110. Leone AM, Gustafsson LE, Francis PL et al. Nitric oxide is present in exhaled breath in humans: direct GC-MS confirmation. Biochem Biophys Res Commun 1994; 201:883–887.

    PubMed  CAS  Google Scholar 

  111. Cueto R, Pryor WA. Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy. Vibrational Spectr 1994; 7:97–111.

    CAS  Google Scholar 

  112. Malinski T, Taha Z, Grumfeld S et al. Diffusion of nitric oxide in the aorta wall monotored in situ by porphyrinic micro-sensors. Biochem Biophys Res Commun 1993; 193:1076–1082.

    PubMed  CAS  Google Scholar 

  113. Malinski T, Kapturczak M, Day harsh J et al. Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun 1993; 194:654–658.

    PubMed  CAS  Google Scholar 

  114. Vithayathil AJ, Ternberg JL, Commoner B. Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 1965; 207:1246–1249.

    PubMed  CAS  Google Scholar 

  115. Commoner B, Woolum JC, Senturia BH et al. The effects of 2-acetylaminofluorene and nitrite on free radicals and carcinogenesis in rat liver. Cancer Res 1970; 30:2091–2097.

    PubMed  CAS  Google Scholar 

  116. Woolum JC, Commoner B. Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 1970; 201:131–140.

    PubMed  CAS  Google Scholar 

  117. Emanuel NM, Saprin AN, Shabalkin VA et al. Detection and investigation of a new type of ESR signal characteristic of some tumour tissues. Nature 1969; 222:165–167.

    PubMed  CAS  Google Scholar 

  118. Vanin AF, Vakhnina LV, Chetverikov AG. Nature of the EPR signals of a new type found in cancer tissues. Biofizika 1970; 15:1044–1051 (English translation 1082–1089).

    Google Scholar 

  119. Maruyama T, Kataoka N, Nagase S et al. Identification of three-line electron spin resonance signal and its relationship to ascites tumors. Cancer Res 1971; 31:179–184.

    PubMed  CAS  Google Scholar 

  120. Conte A, Ottaviani E. Nitric oxide activity in molluscan hemocytes. FEBS Lett 1995; 365:120–124.

    PubMed  CAS  Google Scholar 

  121. Franchini A, Conte A, Ottaviani E. Nitric oxide: an ancestral immunocyte effector molecule. Adv Neuroimmunol 1995; 5:463478.

    Google Scholar 

  122. Sen S, Cheema IR. Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochem Arch 1995; 11:221–227.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 R.G. Landes Company

About this chapter

Cite this chapter

Henry, Y.A. (1997). Introduction: The Origins of Nitric Oxide. In: Nitric Oxide Research from Chemistry to Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1185-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1185-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8503-8

  • Online ISBN: 978-1-4613-1185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics