Skip to main content

Enzymes and Signal Amplification Systems

  • Chapter
Enzyme Immunoassays
  • 415 Accesses

Abstract

Since the introduction of radioimmunoassays in the late 1950s and the widespread reliance on radioisotopic labels in various fields of clinical and medical science and practice during the 1960s and 1970s, rapid changes have occurred in label technology for immunoassays. Even though radioimmunoassays have their unquestionable advantages, certain of their limitations have created a strong demand to develop nonradioisotopic alternatives. Thus, alternative labels and techniques have been adopted primarily in order to obtain simpler or more sensitive assays that do not involve radioisotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atassi, M. Z.; Habeeb, A. F. S. A.; and Ando, K. 1973. Enzymic and immunochemical properties of lysozyme. VII. Location of all the antigenic reactive regions. A new approach to study immunochemistry of tight proteins. Biochim. Biophys. Acta 303:203–209.

    PubMed  CAS  Google Scholar 

  • Avrameas, S. 1969. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry 6:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Avrameas, S.; Ternynck, T.; and Guesdon, J. L. 1978. Coupling of enzyme to antibodies and antigens. In Quantitative Enzyme Immunoassay, eds. E. Engvall and A. J. Pesce, pp. 7–23, Blackwell Scientific, Oxford.

    Google Scholar 

  • Bentley, R. 1963. Glucose oxidase In The Enzymes, vol. 7, 2d ed., eds. P. D. Boyer, H. Lardy, and K. Myrback, pp. 567–586, Academic Press, New York.

    Google Scholar 

  • Bergmeyer, H. U. 1974. Methods of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  • Bovaird, J. H.; Ngo, T. T.; and Lenhoff, H. M. 1982. Optimizing the o-phenylenediamine assay for horseradish peroxidase. Effects of phosphate and pH, substrate and enzyme concentrations and stopping reagents. Clin. Chem. 28:2423–2426.

    PubMed  CAS  Google Scholar 

  • Caswell, M., and Caplow, M. 1980. Correlation of thermodynamic and kinetic properties of the phosphoryl-enzyme formed with alkaline phosphatase. Biochemistry 19:2907–2911.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K. Y., and Carr, C. W. 1971. Structure and function of lysozyme. I. Effect of pH and cation concentration on lysozyme activity. Biochim. Biophys. Acta 229:496–503.

    PubMed  CAS  Google Scholar 

  • Cohn, M., and Torriani, A. M. 1952. Immunochemical studies with (β-galactosidase and structurally related proteins. J. Immunol. 69:471–480.

    PubMed  CAS  Google Scholar 

  • DeMoss, R. D.; Gunsalus, I. C; and Bard, R. C. 1953. A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J. Bacteriol. 66:10–16.

    PubMed  CAS  Google Scholar 

  • Deshpande, S. S. 1994. Immunodiagnostics in agricultural, food, and environmental quality control. Food Technol 48(6): 136–141.

    Google Scholar 

  • Deshpande, S. S., and Sharma, B. P. 1993. Immunoassays, nucleic acid probes, and biosensors. Two decades of development, current status and future projections in clinical, environmental, and agricultural applications. In Diagnostics in the Year 2000, eds., P. Singh, B. P. Sharma, and P. Tyle, pp. 459–525, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Diamandis, E. P. 1988. Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications. Clin. Biochem. 21:139–150.

    PubMed  CAS  Google Scholar 

  • Diamandis, E. P., and Christopoulos, T. K. 1991. The biotin-(strept)avidin system: principles and applications in biotechnology. Clin. Chem. 37:625–636.

    PubMed  CAS  Google Scholar 

  • Dunford, H. B., and Stillman, J. S. 1976. On the function and mechanism of action of peroxidases. Coord. Chem. Rev. 19:187–257.

    Article  CAS  Google Scholar 

  • Fernley, H. N. 1971. Mammalian alkaline phosphatases. In The Enzymes, vol. 4, 3d ed., ed. P. D. Boyer, pp. 417–447, Academic Press, New York.

    Google Scholar 

  • Ford, D. J.; Radin, R.; and Pesce, A. J. 1978. Characterization of glutaraldehyde coupled alkaline phosphatase-antibody and lactoperoxidase-antibody conjugates. Immuno-chemistry 15:237–243.

    Article  CAS  Google Scholar 

  • Fowler, A. V., and Zabin, I. 1977. The amino acid sequence of (β-D-galactosidase of Escherichia coli. Proc. Natl. Acad. Sci. (USA) 74:1507–1510.

    Article  CAS  Google Scholar 

  • Fujiwara, K.; Saita, T.; and Kitagawa, T. 1988. The use of N-[(β -(4-diazophenyl)ethyl] maleimide as a coupling agent in the preparation of enzyme-antibody conjugate. J. Immunol. Meth. 110:47–53.

    Article  CAS  Google Scholar 

  • Geoghegan, W. D. 1985. The Ngo-Lenhoff (MBTH-DMAB) peroxidase assay. In Enzyme-Mediated Immunoassay, eds. T. T. Ngo and H. M. Lenhoff, pp. 451–465, Plenum Press, New York.

    Google Scholar 

  • Gibbons, I.; Skold, C; Rowley, G.L.; and Ullman, E. F. 1980. Homogeneous enzyme immunoassay for proteins employing β -galactosidase. Anal. Biochem. 102:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Gosling, J. P. 1990. A decade of development in immunoassay methodology. Clin. Chem. 36:1408–1427.

    PubMed  CAS  Google Scholar 

  • Gribnau, T. C. J.; Leuvering, J. H. W.; and van Hell, H. 1986. Particle-labeled immunoassays: a review. J. Chromatogr. 376:175–189.

    Article  PubMed  CAS  Google Scholar 

  • Guesdon, J. L. 1988. Amplificaton systems for enzyme immunoassay. In Nonisotopic Immunoassay, ed. T. T. Ngo, pp. 85–106, Plenum Press, New York.

    Google Scholar 

  • Guilbault, G. G.; Brignac, P. J.; and Juneau, M. 1968a. New substrates for the fluorimetric determination of oxidative enzymes. Anal. Chem. 40:1256–1263.

    Article  CAS  Google Scholar 

  • Guilbault, G. G.; Brignac, P. J.; and Zimmer, M. 1968b. Homovanillic acid as a fluorimetric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase and xanthine oxidase systems. Anal. Chem. 40:190–196.

    Article  CAS  Google Scholar 

  • Harada, K., and Wolfe, R. G. 1968. Malate dehydrogenase. VII. The catalytic mechanism and possible role of identical protein subunits. J. Biol. Chem. 243:4131–4137.

    PubMed  CAS  Google Scholar 

  • Haschke, R. H., and Friedhoff, J. M. 1978. Calcium-related properties of horseradish peroxidase. Biochem. Biophs. Res. Commun. 80:1039–1042.

    Article  CAS  Google Scholar 

  • Hasida, S.; Imagawa, M.; Inoue, S.; Ruan, K. H.; and Ishikawa, E. 1984. More useful maleimide compounds for the conjugate of Fab’ to horseradish peroxidase through thiol groups in the hinge. J. Appl. Biochem. 6:56–63.

    Google Scholar 

  • Heppel, L. A.; Harkness, D. R.; and Hilmoe, R. J. 1962. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J. Biol. Chem. 237:841–846.

    PubMed  CAS  Google Scholar 

  • Hoare, D. G., and Koshland, D. E. 1966. A procedure for the selective modification of carboxyl group proteins. J. Am. Chem. Soc. 88:2057–2058.

    Article  CAS  Google Scholar 

  • Holbrook, J. J., and Wolfe, R. G. 1972. Malate dehydrogenase. X. Fluorescence microtitration studies of D-malate, hydroxymalonate, nicotinamide dinucleotide, and dihydronicotinamide-adenine dinucleotide binding by mitochondrial and supernatant porcine heart enzymes. Biochemistry 11:2499–2502.

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, M.; Yoshitake, S.; Hamaguchi, Y.; Ishikawa, E.; Nitsu, Y.; Urushizaki, I.; Kanazawa, R.; Tachibana, S.; Nakazawa, N.; and Ogawa, H. 1982. Characteristics and evaluation of antibody-horseradish peroxidase conjugates prepared by using a maleimide compound, glutaraldehyde, and periodate. J. Appl. Biochem. 4: 41–57.

    CAS  Google Scholar 

  • Ishikawa, E.; Imagawa, M.; Hashida, S.; Yoshitake, S.; Hamaguchi, Y.; and Ueno, T. 1983. Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J. Immunoassay 4:209–327.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, E.; Hashida, S.; Kohno, T.; and Tanaka, K. 1988. Methods for enzyme-labeling of antigens, antibodies and their fragments. In Nonisotopic Immunoassay, ed. T. T. Ngo, pp. 27–55, Plenum Press, New York.

    Google Scholar 

  • Johannsson, A. 1991. Heterogeneous enzyme immunoassay. In Principles and Practice of Immunoassay, eds, C. P. Price and D. J. Newman, pp. 295–325, Stockton Press, New York.

    Google Scholar 

  • Johannsson, A., and Bates, D. L. 1988. Amplification by second enzymes. In ELISA and Other Solid Phase Immunoassays, eds. D. M. Kemeny and S. J. Challacombe, pp. 85–106, John Wiley, Chichester, England.

    Google Scholar 

  • Johannsson, A.; Ellis, D. H.; Bates, D. L.; Plumb, A. M.; and Stanley, C. J. 1986. Enzyme amplification for immunoassays. Detection limit of one hundredth of an attomole. J. Immunol. Meth. 87:7–11.

    Article  CAS  Google Scholar 

  • Jung, K., and Pergande, M. 1980. Influence of inorganic phosphate on the activity determination of isoenzymes of alkaline phosphatase in various buffer systems. Clin. Chim. Acta 102:215–219.

    Article  PubMed  CAS  Google Scholar 

  • Kato, K.; Hamaguchi, Y.; Fukui, H.; and Ishikawa, E. 1975a. Enzyme-linked immunoassay. I. Novel method for synthesis of the insulin-β-D-galactosidase conjugate and its applicability for insulin assay. J. Biochem. 78:235–237.

    CAS  Google Scholar 

  • Kato, K.; Hamaguchi, Y.; Fukui, H.; and Ishikawa, E. 1975b. Enzyme-linked immunoassay. II. A simple method for synthesis of the rabbit antibody-β-D-galactosidase complex and its general applicability. J. Biochem. 78:423–425.

    CAS  Google Scholar 

  • Lin, T. Y., and Koshland, D. E. 1969. Carboxyl group modification and the activity of lysozyme. J. Biol Chem. 244:505–508.

    PubMed  CAS  Google Scholar 

  • Mason, T. E.; Phifer, R. F.; Spicer, S. S.; Swallow, R. A.; and Dreskin, R. B. 1969. An immunoglobulin-enzyme bridge method for localizing tissue antigens. J. Histochem. Cytochem. 17:563–569.

    Article  PubMed  CAS  Google Scholar 

  • McCracken, S., and Meighen, E. A. 1981. Evidence for histidyl residues at the Zn2+ binding sites of monomeric and dimeric forms of alkaline phosphatase. J. Biol. Chem. 256:3945–3950.

    PubMed  CAS  Google Scholar 

  • Milhausen, M., and Levy, H. R. 1975. Evidence for an essential lysine in glucose-6-phosphate dehydrogenase from Leuconostoe mesenteroides. Eur. J. Biochem. 50:453–461.

    Article  PubMed  CAS  Google Scholar 

  • Mize, P. D.; Hoke, R. A.; Linn, C. P.; Reardon, J. E.; and Schulte, T. H. 1989. Dual-enzyme cascade: An amplified method for the detection of alkaline phosphatase. Anal Biochem. 179:229–235.

    Article  PubMed  CAS  Google Scholar 

  • Morishima, I.; Kurono, M.; and Shiro, Y. 1986. Presence of endogenous calcium ion in horseradish peroxidase. Elucidation of metal-binding site by substitutions of divalent and lanthanide ions for calcium and use of metal-induced NMR resonance. J. Biol Chem. 261:9391–9399.

    PubMed  CAS  Google Scholar 

  • Nakamura, R. M.; Voller, A.; and Bidwell, D. E. 1986. Enzyme immunoassays: Heterogeneous and homogeneous systems. In Handbook of Experimental Immunology, Vol. 1, Immunochemistry, 4th ed., ed. D. M. Weir, pp. 27.1–27.20, Blackwell Scientific, Oxford.

    Google Scholar 

  • Nakane, P. K. 1975. Recent progress in the peroxidase-labeled antibody method. Ann. N.Y. Acad. Sci. 254:203–228.

    Article  PubMed  CAS  Google Scholar 

  • Nakane, P. K., and Kawaoi, A. 1974. Peroxidase-labeled antibody, a new method of conjugation. J. Histochem. Cytochem. 22:1084–1091.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, H.; Kezdy, F.; Hsu, J.; and Rosenberg, I. H. 1975. Biochim. Biophys. Acta 391:292–300.

    PubMed  CAS  Google Scholar 

  • Ngo, T. T. 1991. Enzyme systems and enzyme conjugates for solid phase ELISA. In Immunochemistry of Solid-Phase Immunoassay, ed. J. E. Butler, pp. 85–102, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ngo, T. T., and Lenhoff, H. M. 1980. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 105:389–397.

    Article  PubMed  CAS  Google Scholar 

  • Ngo, T. T., and Lenhoff, H. M. 1985. Enzyme-Mediated Immunoassay. Plenum Press, New York.

    Google Scholar 

  • Oellerich, M. 1984. Enzyme immunoassay: A review. J. Clin. Chem. Clin. Biochem. 22:895–904.

    PubMed  CAS  Google Scholar 

  • Ogawa, S.; Shiro, Y.; and Morishima, I. 1979. Calcium binding by horseradish peroxidase C and the heme environmental structure. Biochem. Biophys. Res. Commun. 80: 674–678.

    Article  Google Scholar 

  • O’Malley, J. J., and Weaver, J. L. 1972. Subunit structure of glucose oxidase from Aspergillus niger. Biochemistry 11:3527–3532.

    Article  PubMed  Google Scholar 

  • Phillips, D. C. 1967. The hen egg white lysozyme molecule. Proc. Natl. Acad. Sci. (USA) 57:484–495.

    Article  CAS  Google Scholar 

  • Porstmann, B., and Porstmann, T. 1988. Chromogenic substrates for enzyme immunoassay. In Nonisotopic Immunoassay, ed. T. T. Ngo, pp. 57–84, Plenum Press, New York.

    Google Scholar 

  • Porstmann, B.; Porstmann, T.; Gaede, D.; Nugel, E.; and Egger, E. 1981. Temperature dependent rise in activity of horseradish peroxidase caused by non-ionic detergents and its use in enzyme immunoassay. Clin. Chim. Acta 109:175–181.

    Article  PubMed  CAS  Google Scholar 

  • Reid, T. W., and Wilson, I.B. 1971. Escherichia coli alkaline phosphatase. In The Enzymes, vol. 4, 3d ed., ed. P. D. Boyer, pp. 373–415, Academic Press, New York.

    Google Scholar 

  • Rotman, M. B., and Celada, F. 1968. Antibody-mediate activation of a defective β-galactosidase extracted from an Escherichia coli mutant. Proc. Natl. Acad. Sci. (USA) 60:660–667.

    Article  CAS  Google Scholar 

  • Rowley, G. L.; Rubenstein, K. E.; Huisjen, J.; and Ullman, E. F. 1975. Mechanism by which antibodies inhibit hapten-malate dehydrogenase conjugates. J. Biol. Chem. 250:3759–3766.

    PubMed  CAS  Google Scholar 

  • Rubenstein, K. E.; Schneider, R. S.; and Ullman, E. F. 1972. “Homogeneous” enzyme immunoassay. A new immunochemical technique. Biochem. Biophys. Res. Commun. 47:846–851.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, B. C; Holmes-Siedel, A. G.; and Stark, B. P. 1964. Peroxidase. Butter-worths, London.

    Google Scholar 

  • Self, C. H. 1982. European Patent Application No. 82301170.5 (EP 60123). Chem. Abstr. 97:212066D.

    Google Scholar 

  • Sequin, R. J., and Kosicki, G. W. 1967. Studies on the conformatinal changes of mitochondrial malate dehydrogenase in urea-phosphate solutions. Can. J. Biochem. 45:659–670.

    Article  Google Scholar 

  • Shannon, L. M.; Kay, E.; and Lew, J. Y. 1966. Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241:2166–2172.

    Google Scholar 

  • Shiro, Y.; Kurono, M.; and Morishima, I. 1986. Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J. Biol. Chem. 261:9382–9390.

    PubMed  CAS  Google Scholar 

  • Shore, J. D., and Chakrabarti, S. K. 1976. Subunit dissociation of mitochondrial malate dehydrogenase. Biochemistry 15:875–879.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger, L. A.; Hardy, P. H.; Cuculis, J. J.; and Meyer, H. G. 1970. The unlabeled antibody enzyme method of immunohistochemistry: Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 18:315–333.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, G. H. G.; Haggart, R.; Kricka, L. J.; and Whitehead, T. P. 1984. Enhanced luminescent enzyme immunoassays for Rubella antibody, immunoglobulin E and digoxin. Biochem. Biophys. Res. Commun. 119:481–487.

    Article  PubMed  CAS  Google Scholar 

  • Tijssen, P. 1985. Practice and Theory of Enzyme Immunoassays. Elsevier, Amsterdam.

    Google Scholar 

  • Tijssen, P., and Kurstak, E. 1984. High efficient and simple methods for the preparation of peroxidase and active peroxidase. Antibody conjugates for enzyme immunoassays. Anal. Biochem. 136:451–457.

    Article  PubMed  CAS  Google Scholar 

  • Tsuge, H.; Natsuaki, O.; and Ohashi, K. 1975. Purification, properties and molecular features of glucose oxidase from Aspergillus niger. J. Biochem. (Tokyo) 78:835–843.

    CAS  Google Scholar 

  • Van Weeman, B. K., and Schuurs, A. H. W. M. 1974. Immunoassay using antibody-enzyme conjugates. FEBS Lett. 43:215–221.

    Article  Google Scholar 

  • Wallenfels, K., and Malhotra, O. P. 1960. β-Galactosidase. In The Enzymes, vol. 4, 2d ed., eds. P. D. Boyer, H. Lardy, and K. Myrback, pp. 409–430, Academic Press, New York.

    Google Scholar 

  • Wallenfels, K., and Weil, R. 1972. β-Galactosidase. In The Enzymes, vol. 7, 3d ed., eds. P. D. Boyer, H. Lardy, and K. Myrback, pp. 617–663, Academic Press, New York.

    Google Scholar 

  • Weiss, E., and Van Regenmortel, M. H. 1989. Use of rabbit Fab’-peroxidase conjugates prepared by the maleimide method for detecting plant viruses by ELISA. J. Virol. Methods 21:11–16.

    Article  Google Scholar 

  • Welinder, K. G. 1979. Amino acid sequence studies of horseradish peroxidase. Eur. J. Biochem. 96:483–502.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, J. R. 1994. Principles of Enzymology for the Food Sciences. 2d ed., Marcel Dekker, New York.

    Google Scholar 

  • Whitehead, T. P.; Thorpe, G. H. G.; Carter, T. J. N.; Groucutt, C.; and Kricka, L. J. 1983. Enhanced luminescence procedure for sensitive determination of peroxidase-labeled conjugates in immunoassay. Nature (London) 305:158–159.

    Article  CAS  Google Scholar 

  • Wilson, M. B., and Nakane, P. K. 1979. Preparation and standardization of enzyme-labeled conjugates. In Immunoassays in Clinical Laboratory, eds. R. M. Nakamura, W. R. Ditto, and E. S. Tucker, pp. 81–98, Alan R. Liss, New York.

    Google Scholar 

  • Wong, S. S. 1993. Chemistry of Protein Conjugation and Cross-Linking. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wood, W. G.; Fricke, H.; and Strasburger, C. J. 1988. Solid-phase luminescence imunoassays using kinase and aryl hydrazide labels. In Nonisotopic Immunoassay, ed. T. T. Ngo, pp. 257–270, Plenum Press, New York.

    Google Scholar 

  • Yamada, H.; Imoto, T.; Fujita, K.; Olcazaki, K.; and Motomura, M. 1981. Selective modification of aspartic acid-101 in lysozyme by carbodiimide reaction. Biochemistry 20:4836–4842.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Deshpande, S.S. (1996). Enzymes and Signal Amplification Systems. In: Enzyme Immunoassays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1169-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1169-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8495-6

  • Online ISBN: 978-1-4613-1169-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics