Advertisement

Electrostimulation of Cells by Weak Electric Currents

  • A. Goldsworthy

Abstract

Some cells can detect voltage gradients as low as 0.5 μV/m and current densities of as little as 5 nA/cm2. These extremely sensitive electrosensing mechanisms are used by animals for navigation and to find prey and by plants for predicting the availability of water. They probably evolved from somewhat less-sensitive mechanisms used by most cells for sensing the weak currents that flow within organisms to control their growth. The artificial application of weak electrical currents can sometimes interact with these to stimulate growth, the healing of injuries, and the regeneration of organs. Examples are given, the mechanisms of the effects discussed, and a hypothesis presented for their likely evolution.

Keywords

Plant Tissue Culture Electrical Polarity Voltage Gradient Polar Transport Polar Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassett, C. A. L., Pawluk, R. J., and Becker, R. O. (1964). Effects of electric currents on bone. Nature 204: 652–654.PubMedCrossRefGoogle Scholar
  2. Bennet, M. V. L., and Obara, S. (1986). Ionic mechanisms and pharmacology of electroreceptors. Pages 157–181. In Electroreception. Bullock, T. H., and Heiligenberg, W., eds. John Wiley, New York.Google Scholar
  3. Blackman, V. H. (1924). Field experiments in electroculture. J. Agricult. and Sci. 14: 240–267.CrossRefGoogle Scholar
  4. Blackman, V. H., and Legg, A. T. (1924). Pot culture experiments with an electric discharge. J. Agricult. and Sci. 14: 268–273.CrossRefGoogle Scholar
  5. Blackman, V. H., Legg, A. T., and Gregory, F. G. (1923). The effect of direct electric current of very low intensity on the rate of growth of the coleoptiles of barley. Proc. Roy. Soc. Lond. B. 95: 214–228.CrossRefGoogle Scholar
  6. Borgens, R. B. (1989). Artificially controlling axonal regeneration and development by applied electric fields. Pages 117–170. In Electric Fields in Vertebrate Repair. Borgens, R. B., Robinson, K. R., Vanable, J. W., and McGinnis, M. E., eds. Alan R. Liss, New York.Google Scholar
  7. Borgens, R. B., Robinson, K. R., Vanable, J. W., and McGinnis, M. E. (1989). Electric Fields in Vertebrate Repair. Alan R. Liss, New YorkGoogle Scholar
  8. Borgens, R. B., Vanable, J. W., and Jaffe, L. F. (1977). Initiation of frog limb regeneration by minute currents. J. Exptl. Zool. 200: 403–416.CrossRefGoogle Scholar
  9. Brawley, S. H., and Robinson, K. R. (1982). Rhizoid formation in fucoid embryos is accompanied by F-actin formation. J. Cell Biol. 95: Abstract page 152a.Google Scholar
  10. Brawley, S. H., and Robinson, K. R. (1985). Cytochalasin treatment disrupts endogenous currents associated with cell polarization in fucoid zygotes: Studies on the role of F-actin in embryogenesis. J. Cell Biol. 100:1173–1184.PubMedCrossRefGoogle Scholar
  11. Briggs, L. J., Campbell, A. B., Heald, R. H., and Flint, L. H. (1926). Electroculture, U.S. Dept. Agriculture, Bulletin 1379.Google Scholar
  12. Brownlee, C., and Wood, J. W. (1986). A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature 320: 624–626.CrossRefGoogle Scholar
  13. Chalmers, J. A. (1957). Atmospheric Electricity. Pergamon Press, London.Google Scholar
  14. Cooper, M. S., and Schliwa, M. (1986). Transmembrane Ca2+ fluxes in the forward and reversed galvanotaxis of fish epidermal cells. Pages 311–318. In Ionic Currents in Development. Nuccitelli, R., ed. Alan R. Liss, New York.Google Scholar
  15. Dijak, M., Smith, D. L., Wilson, T. J., and Brown, D. C. W. (1986). Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep. 5: 468–470.CrossRefGoogle Scholar
  16. Ellis, H. W. (1981). The effect of electricity on Hordeum vulgare and Escherichia coli. Ph.D. Thesis, University of London.Google Scholar
  17. Ellis, H. W., and Turner, E. R. (1978). The effect of electricity on plant growth. Sci. Prog. Oxf. 65: 395–407.Google Scholar
  18. Goldsworthy, A. (1988). Growth control in plant tissue cultures. Pages 35–52. In Biotechnology in Agriculture. Mizrahi, A., ed. Alan R. Liss, New York.Google Scholar
  19. Goldsworthy, A., and Rathore, K. S. (1985). The electrical control of growth in plant tissue cultures: The polar transport of auxin. J. Exptl. Bot. 36: 1134–1141.CrossRefGoogle Scholar
  20. Hepler, P. K., and Wayne, R. (1985). Calcium and plant cell development. Ann. Rev. Plant Physiol. 38: 397–439.CrossRefGoogle Scholar
  21. Illingworth, C. M., and Barker, A. T. (1980). Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin. Phys. Physiol. Meds. 1: 87–89.CrossRefGoogle Scholar
  22. Jaffe, L. F. (1966). Electrical currents through the developing Fucus egg. Proc. Natl. Acad. Sci. USA 56: 1102–1109.PubMedCrossRefGoogle Scholar
  23. Jaffe, L. R, Robinson, K. R., and Nuccitelli, R. (1974). Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann. N.Y. Acad. Sci. 238: 372–389.PubMedCrossRefGoogle Scholar
  24. Johnsson, A. (1967). Relationships between photo-induced and gravity-induced electrical potentials in Zea mays. Physiol. Plant. 20: 562–579.CrossRefGoogle Scholar
  25. Lemstrom, S. (1904). Electricity in Agriculture and Horticulture. The Electrician. Printing and Publishing Co., London.Google Scholar
  26. Lund, E. J. (1947a). Polar distribution of maintained electric circuits on the surface of Pithophora sp. cells. Pages 1–15. In Bioelectric Fields and Growth. Lund, E. J., ed. University of Texas Press, Austin, TX.Google Scholar
  27. Lund, E. J. (1947b). Control of orientation of growth in reassociating cells of Obelia. Pages 231–233. In Bioelectric Fields and Growth. Lund, E. J., ed. University of Texas Press, Austin, TX.Google Scholar
  28. Lutkova, I. N., and Oleshko, P. M. (1965). Effect of electric current during stratification in cherry seeds, (in Russian) Fiziol. Rast. 12: 238–241.Google Scholar
  29. Malan, D. J. (1963). Physics of Lightning. The English Universities Press, London.Google Scholar
  30. McGinnis, M. E. (1989). The nature and effects of electricity in bone. Pages 225–284. In Electric Fields in Vertebrate Repair. Borgens, R. B., Robinson, K. R., Vanable, J. W., and McGinnis, M. E., eds. Alan R. Liss, New York.Google Scholar
  31. Mina, M. G., and Goldsworthy, A. (1991). Changes in the electrical polarity of tobacco cells following the application of weak external currents. Planta 186: 104–108.CrossRefGoogle Scholar
  32. Murr, L. E. (1963). Plant growth response in a stimulated electric field environment. Nature 200: 490–491.CrossRefGoogle Scholar
  33. Novak, B., and Bentrup, F. W. (1973). Orientation of fucus egg polarity in electric A.C. and D.C. fields. Biophysics 9: 253–260.Google Scholar
  34. Nuccitelli, R. (1978). Ooplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Dev. Biol. 62: 13–33.PubMedCrossRefGoogle Scholar
  35. Nuccitelli, R. (1984). The involvement of transcellular ion currents and electric fields in pattern formation. Pages 23–46. In Pattern Formation: A Primer in Developmental Biology. Malacinski, G. M., and Bryant, S. V., eds. Macmillan, New York.Google Scholar
  36. Ochatt, S. J., Chand, P. K., Rech, E. L., Davey, M. R., and Power, J. B. (1988). Electroporation-mediated improvement of plant regeneration from colt cherry (Prunus avium X pseudocerasus) protoplasts. Plant Sci. 54: 165–169.CrossRefGoogle Scholar
  37. Peng, H. B., and Jaffe, L. F. (1976). Polarization of fucoid eggs by steady electrical fields. Dev. Biol. 53: 277–284.PubMedCrossRefGoogle Scholar
  38. Pittman, U. J., and Ormrod, D. P. (1970). Physiological and chemical features of magnetically treated winter wheat seeds and resultant seedlings. Can. J. Plant Sci. 50: 211–217.CrossRefGoogle Scholar
  39. Poo, M. M., and Robinson, K. R. (1977). Electrophoresis of concanavalin A receptors along muscle cell membranes. Nature 265: 602–605.PubMedCrossRefGoogle Scholar
  40. Quatrano, R. S. (1978). Development of cell polarity. Ann. Rev. Plant Physiol. 29: 487–510.CrossRefGoogle Scholar
  41. Rathore, K. S., and Goldsworthy, A. (1985a). Electrical control of growth in plant tissue cultures. Bio/Technol. 3: 253–254.CrossRefGoogle Scholar
  42. Rathore, K. S., and Goldsworthy, A. (1985b). Electrical control of shoot regeneration in plant tissue cultures. Bio/Technol. 3: 1107–1109.CrossRefGoogle Scholar
  43. Rathore, K. S., Hodges, T. K., and Robinson, K. R. (1988). A refined technique to apply electrical currents to callus cultures. Plant Physiol. 88: 515–517.PubMedCrossRefGoogle Scholar
  44. Robinson, K. R., and Cone, R. (1980). Polarization of fucoid eggs by a calcium ionophore gradient. Science 207: 77–78.PubMedCrossRefGoogle Scholar
  45. Schnepf, E. (1986). Cellular polarity. Ann. Rev. Plant Physiol. 37: 23–47.CrossRefGoogle Scholar
  46. Schonland, B. F. J. (1928). The interchange of electricity between thunderclouds and the earth. Proc. Roy. Soc. A118: 252–262.Google Scholar
  47. Schrank, A. R. (1946). Note on the effect of unilateral illumination on the transverse electrical polarity of the Avena coleoptile. Plant Physiol. 21: 362–365.PubMedCrossRefGoogle Scholar
  48. Schrank, A. R. (1947a). Analysis of the effects of gravity on the electric correlation field in the coleoptile of Avena sativa. Pages 75–123. In Bioelectric Fields and Growth. Lund, E. J., ed. University of Texas Press, Austin, TX.Google Scholar
  49. Schrank, A. R. (1947b). Electrical and curvature responses of the Avena coleoptiles to transversely applied direct current. Pages 217–231. In Bioelectric Fields and Growth. Lund, E. J., ed. University of Texas Press, Austin.Google Scholar
  50. Shatilov, F. V., and Trifonova, M. F. (1968). The effect of a direct current on the metabolism of sprouting barley seeds, (in Russian). Electron Orab. Mater. 1: 67–74.Google Scholar
  51. Stanko, S. A., and Koshevnikova, N. F. (1972). Physiologico-biochemical changes in wheat plants before and after pre-sowing treatment of seeds with an electric current, (in Russian). Sel’Sko-Khozyaistvennaya 7: 624–626.Google Scholar
  52. Stern, L. L., and Yageya, J. (1980). Bioelectric potentials after fracture of the tibia in rats. Acta Orthop. Scand. 51: 601–608.CrossRefGoogle Scholar
  53. Stump, R. F., and Robinson, K. R. (1982). Directional movement of Xenopus embryonic cells in an electric field. J. Cell Biol. 95: Abstract page 331a.Google Scholar
  54. Vanable, J. W. (1989). Integumentary potentials and wound healing. Pages 171–224. In Electric Fields in Vertebrate Repair. Borgens, R. B., Robinson, K. R., Vanable, J. W., and McGinnis, M. E., eds. Alan R. Liss, New York.Google Scholar
  55. Webster, W. W., and Schrank, A. R. (1953). Electrical induction of lateral transport of 3-indoleacetic acid in the Avena coleoptile. Arch. Biochem. Biophys. 47: 107–118.PubMedCrossRefGoogle Scholar
  56. Wilkes, S. S., and Lund, E. J. (1947). The electric correlation field and its variationsin the coleoptile of Avena sativa. Pages 24–75. In Bioelectric Fields and Growth. Lund, E. J., ed. University of Texas Press, Austin, TX.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • A. Goldsworthy

There are no affiliations available

Personalised recommendations