A Nutrient That Is Involved in the Regulation of Cell Proliferation, Cell Death, and Cell Transformation
  • Steven H. Zeisel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 399)


In human beings, liver cancer is one of the most frequent tumors, occurring mainly in areas where hepatitis B virus is endemic1. Dietary deficiency of choline causes hepatocellular carcinoma in the rat2,3; this is the only nutritional deficiency known to cause cancer spontaneously. Though we do not believe choline deficiency is the major cause of human liver cancer, we suggest that this experimental model can be used to study how a nutrient modulates some of the molecular events that regulate hepatocyte proliferation, death and transformation.


Hepatocyte Growth Factor Human Liver Cancer Choline Deficiency Methionine Adenosyltransferase Choline Deficient Diet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shafritz, D. A. (1982). Hepatitis B virus DNA molecules in the liver of HBs Ag carriers. Mechanistic considerations in the pathogenesis of hepatocellular carcinoma. Hepatology. 2, 359–419.Google Scholar
  2. 2.
    daCosta, K., Cochary, E. F., Blusztajn, J. K., Garner, S. C. and Zeisel, S. H. (1993). Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline deficient rats. J. Biol. Chem. 268, 2100–2105.Google Scholar
  3. 3.
    da Costa, K.-A., Garner, S. C, Chang, J. and Zeisel, S. H. (1995). Effects of prolonged (1 year) choline deficiency and subsequent refeeding of choline on 1,2,-sn-diradylglycerol, fatty acids and protein kinase C in rat liver. Carcinogenesis. 16, 327–334.CrossRefGoogle Scholar
  4. 4.
    Wainfan, E. and Poirier, L. A. (1992). Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 52, 2071s-2077s.PubMedGoogle Scholar
  5. 5.
    Luber, B., Lauer, U., Weiss, L., Hohne, M., Hofschneider, P. H. and Kekule, A. S. (1993). The hepatitis B virus transactivator HBx causes elevation of diacylglycerol and activation of protein kinase C. Res. Virol. 144, 311–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Kekule, A. S., Lauer, U., Weiss, L., Luber, B. and Hofschneider, P. H. (1993). Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature. 361, 742–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Zeisel, S. H. and Blusztajn, J. K. (1994). Choline and human nutrition. Ann. Rev. Nutr. 14, 269–296.CrossRefGoogle Scholar
  8. 8.
    Kim, Y.-L, Miller, J. W., da Costa, K.-A., Nadeau, M., Smith, D., Selhub, J., Zeisel, S. H. and Mason, J. B. (1995). Folate deficiency causes secondary depletion of choline and phosphocholine in liver. J. Nutr. 124, 2197–2203.Google Scholar
  9. 9.
    Varela-Moreiras, G., Selhub, J., da Costa, K. and Zeisel, S.H. (1992). Effect of chronic choline deficiency in rats on liver folate content and distribution. J. Nutr. Biochem. 3, 519–522.CrossRefGoogle Scholar
  10. 10.
    Selhub, J., Seyoum, E., Pomfret, E. A. and Zeisel, S. H. (1991). Effects of choline deficiency and methotrexate treatment upon liver folate content and distribution. Cancer Res. 51, 16–21.PubMedGoogle Scholar
  11. 11.
    Ghoshal, A. K. and Farber, E. (1993). Choline deficiency, lipotrope deficiency and the development of liver disease including liver cancer: a new perspective. Lab. Invest. 68, 255–260.PubMedGoogle Scholar
  12. 12.
    Mikol, Y. B., Hoover, K. L., Creasia, D. and Poirier, L. A. (1983). Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis. 4, 1619–1629.PubMedCrossRefGoogle Scholar
  13. 13.
    Ghoshal, A. K. and Farber, E. (1984). The induction of liver cancer by dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis. 5, 1367–1370.PubMedCrossRefGoogle Scholar
  14. 14.
    Newberne, P. M. and Rogers, A. E. (1986). Labile methyl groups and the promotion of cancer. Ann. Rev. Nutr. 6, 407–432.CrossRefGoogle Scholar
  15. 15.
    Christman, J. K., Chen, M.-L., Sheiknejad, G., Dizik, M., Abileah, S. and Wainfan, E. (1993). Methyl deficiency, DNA methylation and cancer: Studies on the reversibility of the effects of a lipotrope-deficient diet. J. Nutr. Biochem. 4, 672–680.CrossRefGoogle Scholar
  16. 16.
    Chandar, N., Amenta, J., Kandala, J. C. and Lombardi, B. (1987). Liver cell turnover in rats fed a choline-devoid diet. Carcinogenesis. 8, 669–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Farber, E. (1976). The pathology of experimental liver cell cancer. In Liver Cell Cancer. (H. M. Cameron, D. A. Linsell and G. P. Warwick ed.), Elsevier. Amsterdam, p. 243–277Google Scholar
  18. 18.
    Maronpot, R. R., Montgomery Jr., C. A., Boorman, G. A. and McConnell, E. E. (1986). National toxicology program nomenclature for hepatoproliferative lesions of rats. Current Topics Toxicol. Pathol. 14, 263–273.CrossRefGoogle Scholar
  19. 19.
    Nakae, D., Yoshiji, H., Maruyama, H., Kinugasa, T., Denda, A. and Konishi, Y (1990). Production of both 8-hydroxyguanosine in liver DNA and γ-glutamyltransferase-positive hepatocellular lesions in rats given a choline-deficient, L-amino acid-defined diet. Jpn. J. Cancer Res. 81, 1081–1084.PubMedGoogle Scholar
  20. 20.
    Banni, S., Evans, R. W., Salgo, M. G., Corongiu, F. P. and Lombardi, B. (1990). Conjugated diene and trans fatty acids in a choline-devoid diet hepatocarcinogenic in the rat. Carcinogenesis. 11, 2047–2051.PubMedCrossRefGoogle Scholar
  21. 21.
    Lombardi, B. and Smith, M. L. (1994). Tumorigenesis, protooncogene activation, and other gene abnormalities in methyl deficiency. J. Nutr. Biochem. 5, 2–9.CrossRefGoogle Scholar
  22. 22.
    Locker, J., Reddy, T. V. and Lombardi, B. (1986). DNA methylation and hepatocarcinogenesis in rats fed a choline devoid diet. Carcinogenesis. 7, 1309–1312.PubMedCrossRefGoogle Scholar
  23. 23.
    Wainfan, E., Dizik, M., Stender, M. and Christman, J. (1989). Rapid appearance of hypomethylated DNA in livers of rats fed cancer promoting, methyl-deficient diets. Cancer Res. 49, 4094–4097.PubMedGoogle Scholar
  24. 24.
    Dizik, M., Christman, J. K. and Wainfan, E. (1991). Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 12, 1307–1312.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, D. H., Xu, D. C, Chandar, N., Lombardi, B. and Randerath, K. (1990). Persistent reduction of indigenous DNA modification (I-compound) levels in liver DNA from male Fischer rats fed choline-devoid diet and in DNA of resulting neoplasms. Cancer Res. 50, 7577–80.PubMedGoogle Scholar
  26. 26.
    Chandar, N. and Lombardi, B. (1988). Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis. 9, 259–263.PubMedCrossRefGoogle Scholar
  27. 27.
    Abanobi, S. E., Lombardi, B. and Shinozuka, H. (1982). Stimulation of DNA synthesis and cell proliferation in the liver of rats fed a choline-devoid diet and their suppression by phenobarbital. Cancer Res. 42,412–5.PubMedGoogle Scholar
  28. 28.
    Zeisel, S. H. (1993). Choline phospholipids: signal transduction and carcinogenesis. FASEB J. 7, 551–557.PubMedGoogle Scholar
  29. 29.
    Weinstein, I. B. (1990). The role of protein kinase C in growth control and the concept of carcinogenesis as a progressive disorder in signal transduction. Adv. Second Messenger Phosphoprotein Res. 24, 307–316.PubMedGoogle Scholar
  30. 30.
    Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 258, 607–614.PubMedCrossRefGoogle Scholar
  31. 31.
    Kato, M., Kawai, S. and Takenawa, T. (1989). Defect in phorbol acetate-induced translocation of diacylglycerol kinase in erbB-transformed fibroblast cells. FEBS Lett. 247, 247–250.PubMedCrossRefGoogle Scholar
  32. 32.
    Johansen, T., Bjorkoy, G., Overvatn, A., Diaz-Meco, M. T., Traavik, T. and Moscat, J. (1994). NIH 3T3 cells stably transfected with the gene encoding phosphatidylcholine-hydrolyzing phospholipase C from Bacillus cereus acquire a transformed phenotype. Mol. Cell. Biol. 14, 646–654.PubMedGoogle Scholar
  33. 33.
    Lester, D. S., Collin, C, Etcheberrigaray, R. and Alkon, D. L. (1991). Arachidonic acid and diacylglycerol act synergistically to activate protein kinase C in vitro and in vivo. Biochem. Biophys. Res. Comm. 179, 1522–1528.CrossRefGoogle Scholar
  34. 34.
    Price, B. D., Morris, J. D., Marshall, C. J. and Hall, A. (1989). Stimulation of phosphatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic ras is a consequence of protein kinase C activation. J. Biol. Chem. 264, 16638–16643.PubMedGoogle Scholar
  35. 35.
    Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science. 233, 305–312.PubMedCrossRefGoogle Scholar
  36. 36.
    Diaz-Laviada, I., Larrodera, P., Diaz-Meco, M., Cornet, M. E., Guddal, P. H., Johansen, T. and Moscat, J. (1990). Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes. Embo J. 9, 3907–3912.PubMedGoogle Scholar
  37. 37.
    Cacace, A. M., Guadagno, S. N., Krauss, R. S., Fabbro, D. and Weinstein, I. B. (1993). The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene. 8, 2095–2104.PubMedGoogle Scholar
  38. 38.
    Housey, G. M., Johnson, M. D., Hsiao, W. L. W., O’Brian, C. A., Murphy, J. P., Kirschmeier, P. and Weinstein, I. B. (1988). Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell. 52, 343–354.PubMedCrossRefGoogle Scholar
  39. 39.
    Krauss, R., Housey, G., Johnson, M. and Weinstein, I. B. (1989). Disturbances in growth control and gene expression in a C3H/10T1/2 cell line that stably overproduces protein kinase C. Oncogene. 4, 991–998.PubMedGoogle Scholar
  40. 40.
    dePaoli-Roach, A., Roach, P. J., Zucker, K. E. and Smith, S. S. (1986). Selective phosphorylation of human DNA methyltransferase by protein kinase C. FEBS Letters. 197, 149–153.PubMedCrossRefGoogle Scholar
  41. 41.
    Bauer, P. I., Farkas, G., Buday, L., Mikala, G., Meszaros, G., Kun, E. and Farago, A. (1992). Inhibition of DNA binding by the phosphorylation of poly ADP-ribose polymerase protein catalysed by protein kinase C. Biochem Biophys Res Comm. 187, 730–736.PubMedCrossRefGoogle Scholar
  42. 42.
    Harris, C. C. and Sun, T. (1984). Multifactoral etiology of human liver cancer. Carcinogenesis. 5, 697–701.PubMedCrossRefGoogle Scholar
  43. 43.
    Fausto, N. and Mead, J. E. (1989). Regulation of liver growth: protooncogenes and transforming growth factors. Lab. Invest. 60, 4–13.PubMedGoogle Scholar
  44. 44.
    Hsieh, L. L., Wainfan, E., Hoshina, S., Dizik, M. and Weinstein, I. B. (1989). Altered expression of retrovirus-like sequences and cellular oncogenes in mice fed methyl-deficient diets. Cancer Res. 49, 3795–3799.PubMedGoogle Scholar
  45. 45.
    Chandar, N., Lombardi, B. and Locker, J. (1989). c-myc gene amplification during hepatocarcinogenesis by a choline-devoid diet. Proc. Natl. Acad. Sci. USA. 86, 2703–2707.PubMedCrossRefGoogle Scholar
  46. 46.
    Boccaccio, C, Gaudino, G., Gambarotta, G., Galimi, F. and Comoglio, P. M. (1994). Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J. Biol. Chem. 269, 12846–51.PubMedGoogle Scholar
  47. 47.
    Shinozuka, H., Masuhara, M., Kubo, Y. and Katyal, S. L. (1993). Growth factor and receptor modulations in rat liver by choline-methionine deficiency. J. Nutr. Biochem. 4, 610–617.CrossRefGoogle Scholar
  48. 48.
    Pittelkow, M. R., Lindquist, P. B., Abraham, R. T., Graves-Deal, R., Derynck, R. and Coffey, R. J. J. (1989). Induction of transforming growth factor-alpha expression in human keratinocytes by phorbol esters. J. Biol. Chem. 264, 5164–71.PubMedGoogle Scholar
  49. 49.
    Bosenberg, M. W., Pandiella, A. and Massague, J. (1993). Activated release of membrane-anchored TGF-alpha in the absence of cytosol. J. Cell. Biol. 122, 95–101.PubMedCrossRefGoogle Scholar
  50. 50.
    Massague, J. and Pandiella, A. (1993). Membrane-anchored growth factors. Annu Rev Biochem. 62, 515–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Albright, C. D., Bethea, T. C, da Costa, K.-A. and Zeisel, S. H. (1995). Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture, submitted.Google Scholar
  52. 52.
    Arends, M. J., Morris, R. G. and Wyllie, A. H. (1990). Apoptosis. The role of the endonuclease. Am. J. Pathol. 136, 593–608.PubMedGoogle Scholar
  53. 53.
    Wyllie, A. H. (1987). Cell death. Int. Rev. Cytol. 17 (Suppl), 755–785.Google Scholar
  54. 54.
    Murgia, M., Pizzo, P., Sandona, D., Zanovello, P., Rizzuto, R. and Virgilio, F. D. (1992). Mitochondrial DNA is not fragmented during apoptosis. J. Biol. Chem. 267, 10939–10941.PubMedGoogle Scholar
  55. 55.
    Nosseri, C, Coppola, S. and Ghibelli, L. (1994). Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp Cell Res. 212, 367–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Rotello, R. J., Lieberman, R. C, Purchio, A. F. and Gerschenson, L. E. (1991). Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 88, 3412–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Brune, B., Hartzell, P., Nicotera, P. and Orrenius, S. (1991). Spermine prevents endonuclease activation and apoptosis in thymocytes. Exp Cell Res. 195, 323–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Schwartzman, R. A. and Cidlowski, J. A. (1993). Apoptosis: The biochemistry and molecular biology of programmed cell death. Endoc. Rev. 14, 133–151.Google Scholar
  59. 59.
    Martikainen, P., Kyprianou, N., Tucker, R. W. and Isaacs, J. T. (1991). Programmed death of nonprolif-erating androgen-independent prostatic cancer cells. Cancer Res. 51, 4693–700.PubMedGoogle Scholar
  60. 60.
    Obeid, L. M., Linardic, C. M., Karolak, L. A. and Hannun, Y. A. (1993). Programmed cell death induced by ceramide. Science. 259, 1769–1771.PubMedCrossRefGoogle Scholar
  61. 61.
    Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 352, 345–7.PubMedCrossRefGoogle Scholar
  62. 62.
    McCune, B. K., Prokop, C. A. and Earp, H. S. (1990). Transient epidermal growth factor (EGF)-dependent suppression of EGF receptor autophophorylation during internalization. J. Biol. Chem. 265, 9715–9721.PubMedGoogle Scholar
  63. 63.
    Beguinot, L., Hanover, J. A., Ito, S., Richert, N. D., Willingham, M. C. and Pastan, I. (1985). Phorbol Esters Induce Internalization Without Degradation of Unoccupied Epidermal Growth Factor Receptors. Proc. Natl. Acad. Sci. USA82, 2774–2778PubMedCrossRefGoogle Scholar
  64. 64.
    Gupta, C, Hattori, A., Betschard, J. M., Virji, M. A. and Shinozuka, H. (1988). Modulation of epidermal growth factors in rat hepatocytes by two liver tumor-promoting regiments, a choline-deficient and a phenolbarbital diet. Cancer Res48, 1162–1165PubMedGoogle Scholar
  65. 65.
    Russell, W. E. (1988). Transforming growth factor beta (TGF-beta) inhibits hepatocyte DNA synthesis independently of EGF binding and EGF receptor autophosphorylation. J Cell. Physiol. 135, 253–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Oberhammer, F. A., Pavelka, M., Sharma, S., Tiefenbacher, R., Purchio, A. F., Bursch, W. and Schulte-Hermann, R. (1992). Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci USA. 89, 5408–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Oberhammer, F., Bursch, W., Tiefenbacher, R., Froschl, G., Pavelka, M., Purchio, T. and Schulte-Her-mann, R. (1993). Apoptosis is induced by transforming growth factor-beta 1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology. 18, 1238–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Duronio, V., Huber, B. E. and Jacobs, S. (1990). Partial down-regulation of protein kinase C reverses the growth inhibitory effect of phorbol esters on HepG2 cells. J. Cell. Physiol. 145, 381–389.PubMedCrossRefGoogle Scholar
  69. 69.
    Woodworth, C. D., Secott, T. and Isom, H. C. (1986). Transformation of rat hepatocytes by transfection with simian virus 40 DNA to yield proliferating differentiated cells. Cancer Res. 46, 4018–4026.PubMedGoogle Scholar
  70. 70.
    Woodworth, C. D. and Isom, H. C. (1987). Regulation of albumin gene expression in a series of rat hepatocyte cell lines immortalized by simian virus 40 and maintained in chemically defined medium. Molec. Cell. Biol. 7, 3740–3748.PubMedGoogle Scholar
  71. 71.
    Woodworth, C. D., Krieder, J. W., Mengel, L., Miller, T., Meng, Y. and Isom, H. C. (1988). Tumorigenicity of simian virus 40-hepatocyte cell lines: effect of in vitro and in vivo passage on expression of liver-specific genes and oncogenes. Molec. Cell. Biol. 8, 4492–4501.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Steven H. Zeisel
    • 1
  1. 1.Department of NutritionUniversity of North Carolina at Chapel Hill, Schools of Public Health and MedicineChapel HillUSA

Personalised recommendations