Skip to main content

Spatially-Resolved Studies of Charge-Density-Wave Deformations and Phase Slip in NbSe3

  • Chapter
Book cover Physics and Chemistry of Low-Dimensional Inorganic Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 354))

  • 602 Accesses

Abstract

Phase slip is a process of fundamental importance in charge-density-wave (CDW) systems, allowing addition and removal of CDW phase fronts and conversion between single-particle and CDW current [1]. Here we describe spatially-resolved measurements of CDW structure and transport in NbSe3 that illuminate the mechanisms underlying phase slip and the effects of slip on other CDW phenomena in this material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a comprehensive review of previous work on CDW phase slip, see F. Ya. Nad’ in Charge Density Waves in Solids, eds. L. P. Gor’kov and G. Grüner, (Elsevier, 1989), p. 189.

    Google Scholar 

  2. J. C. Gill, Solid State Commun. 44, 1041 (1982).

    Article  CAS  Google Scholar 

  3. N. P. Ong, G. Verma, and K. Maki, Phys. Rev. Lett. 52, 663 (1984);

    Article  CAS  Google Scholar 

  4. L. P. Gor’kov, JETP Lett. 38, 87 (1983).

    Google Scholar 

  5. D. Feinberg and J. Freidel, in Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker, (Kluwer Academic Publishers, 1989), p. 407.

    Chapter  Google Scholar 

  6. K. Maki, Physica 143B, 59 (1986).

    Google Scholar 

  7. S. Ramakrishna, M. P. Maher, V. Ambegaokar, and U. Eckern, Phys. Rev. Lett. 68, 2066 (1992).

    Article  Google Scholar 

  8. J. C. Gill, J. Phys. C 19, 6589 (1986).

    Article  CAS  Google Scholar 

  9. P. Monceau, M. Renard, J. Richard, and M. C. Saint-Lager, Physica 143B, 64 (1986);

    Google Scholar 

  10. M. C. Saint-Lager, P. Monceau, and M. Renard, Synth. Met. 29, F279 (1989).

    Article  Google Scholar 

  11. D. V. Borodin, S. V. Zaitsev-Zotov, and F. Ya. Nad’, Sov. Phys. JETP 66, 793 (1987).

    Google Scholar 

  12. M. P. Maher, T. L. Adelman, S. Ramakrishna, J. P. McCarten, D. A. DiCarlo, and R. E. Thome, Phys. Rev. Lett. 68, 3084 (1992).

    Article  CAS  Google Scholar 

  13. M. P. Maher et al., Phys. Rev. B (in press).

    Google Scholar 

  14. J. C. Gill, J. de Physique IV 3, C2–165 (1993).

    Google Scholar 

  15. D. DiCarlo, E. Sweetland, M. Sutton, J. D. Brock, and R. E. Thome, Phys. Rev. Lett. 70, 845 (1993).

    Article  Google Scholar 

  16. T. L. Adelman, M. C. de Lind van Wijngaarden, S. V. Zaitsev-Zotov, D. DiCarlo, and R. E. Thome, submitted to Phys. Rev. B; M. C. de Lind van Wijngaarden et al., to be submitted to Phys. Rev. B.

    Google Scholar 

  17. L. Mihaly and A. Janossy, Phys. Rev. B. 30, 3530 (1984);

    Article  CAS  Google Scholar 

  18. S. E. Brown, L. Mihaly, and G. Gruner, Solid State Commun. 58, 231 (1986).

    Article  CAS  Google Scholar 

  19. M. E. Itkis and J. W. Brill, Phys. Rev. Lett. 72, 2049 (1994).

    Article  CAS  Google Scholar 

  20. J. C. Gill, Phys. Rev. Lett. 70, 331 (1993).

    Article  CAS  Google Scholar 

  21. M. E. Itkis and S. V. Zaitsev-Zotov, J. de Physique IV 3, C2–193 (1993).

    Google Scholar 

  22. F. Ya. Nad’, M. E. Itkis, P. Monceau, and M. Renard, J. de Physique IV 3, C2–175 (1993).

    Google Scholar 

  23. Rs in NbSe3 is not measurably affected by CDW strains for T>59 K.

    Google Scholar 

  24. H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978);

    Article  CAS  Google Scholar 

  25. P. A. Lee and T. M. Rice, Phys. Rev. B 19, 3970 (1979).

    Article  CAS  Google Scholar 

  26. V ps(i c) is essentially independent of current contact separation L [7–10] so that K z 2ϕ/∂z 2V ps/L is small for large L.

    Google Scholar 

  27. J. C. Gill, Europhysics Lett. 11, 175 (1990).

    Article  CAS  Google Scholar 

  28. G. Mihaly, G. Kriza, and A. Janossy, Phys. Rev. B30, 3578 (1984);

    Article  CAS  Google Scholar 

  29. Z. Z. Wang and N. P. Ong, Phys. Rev. Lett. 58, 2375 (1987);

    Article  CAS  Google Scholar 

  30. J. Zhang, J. F. Ma, S. E. Nagler, and S. E. Brown, Phys. Rev. Lett. 70, 3095 (1993);

    Article  CAS  Google Scholar 

  31. J. Dumas and A. Arbaoui, J. de Physique IV 3, C2–179 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Adelman, T.L., DiCarlo, D.A., de Lind van Wijngaarden, M.C., Maher, M.P., Brock, J.D., Thorne, R.E. (1996). Spatially-Resolved Studies of Charge-Density-Wave Deformations and Phase Slip in NbSe3 . In: Schlenker, C., Dumas, J., Greenblatt, M., van Smaalen, S. (eds) Physics and Chemistry of Low-Dimensional Inorganic Conductors. NATO ASI Series, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1149-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1149-2_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8449-9

  • Online ISBN: 978-1-4613-1149-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics