Angle Resolved Photoemission and Resonant Photoemission Studies of Quasi Low-Dimensional Oxide Conductors

Fermi Surfaces and Defects
  • Kevin E. Smith
  • Klaus Breuer
  • Cristian Stagarescu
  • Martha Greenblatt
  • William McCarroll
  • Kandalam Ramanujachary
Part of the NATO ASI Series book series (NSSB, volume 354)

Abstract

Quasi-low dimensional transition metal oxide conductors have been studied extensively in recent years, but it is only with the advent of high resolution photoemission spectroscopy that the detailed electronic structure of these systems has become accessible [1]. Photoemission spectroscopy provides unique information on these solids, and significant progress has been made recently in understanding electronic states in quasi-low dimensional solids. In this paper we discuss the application of angle resolved photoemission (ARP) to the study of quasi-one dimensional (ID) and quasi-two dimensional (2D) transition metal oxide bronzes, with particular emphasis on their Fermi surfaces and on their defect electronic structure close to the Fermi level (EF). The specific oxides that we have studied are K0.3MoO3, Li0.9Mo6O17, and Na0.9Mo6O17, although many of our conclusions are relevant to all quasi-ID and quasi-2D solids. The physical phenomena characteristic of quasi-1D and quasi-2D solids have been described extensively in this book, as has their modification by defects; consequently they will not be reviewed here. Furthermore, the basic concepts underlying angle integrated photoemission have also been discussed by Malterre in these proceedings. Our focus in this paper will be on the unique information obtained from ARP, namely the k-resolved electronic structure, and from resonant photoemission, namely the orbital character of electronic states.

Keywords

Manifold Petroleum Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.E. Smith, Ann. Rep. Prog. Chem. C 90 115 (1993).CrossRefGoogle Scholar
  2. 2a.
    K.E. Smith and S.D. Kevan, Prog. Solid State Chem. 21, 49 (1991);Google Scholar
  3. 2b.
    Angle Resolved Photoemission, Ed. S.D. Kevan, Elsevier, Amsterdam, 1991.Google Scholar
  4. 3.
    L.C. Davis, J. Appl. Phys. 59, R25 (1986), and references therein.CrossRefGoogle Scholar
  5. 4.
    J.W. Allen, in Synchrotron Radiation Research: Advances in Surface and Interface Science, Vol. 1, edited by R.Z. Bachrach. (Plenum, New York, 1992) p. 253.Google Scholar
  6. 5.
    M. Greenblatt, Chem. Rev. 88, 31 (1988).CrossRefGoogle Scholar
  7. 6.
    S.D. Kevan, Rev. Sci. Instrum. 54, 1441 (1983).CrossRefGoogle Scholar
  8. 7.
    K.E. Smith, K. Breuer, M. Greenblatt and W. McCarroll, Phys. Rev. Lett. 70, 3772 (1993).CrossRefGoogle Scholar
  9. 8.
    M-H. Whangbo and E. Canadell, J. Am. Chem. Soc. 110, 358 (1988).CrossRefGoogle Scholar
  10. 9.
    J. Rouxel, in Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures, ed. J. Rouxel, (D. Reidel Publishing, Dordrecht, 1986), p1.CrossRefGoogle Scholar
  11. 10a.
    H. Mutka, S. Bouffard, J. Dumas and C. Schenkler, J. Physique Lett. 45 L729, (1984);CrossRefGoogle Scholar
  12. 10b.
    C.H. Chen, L.F. Schneemeyer and R.M. Fleming, Phys. Rev. B 29, 3765 (1984);CrossRefGoogle Scholar
  13. 10c.
    S.M. DeLand, G. Mozurkewich and L.D. Chapman, Phys. Rev. Lett. 66, 2026 (1991).CrossRefGoogle Scholar
  14. 11.
    J. Graham and A.D. Wadsley, Acta. Cryst. 20, 93 (1966).CrossRefGoogle Scholar
  15. 12.
    K. Breuer, K.E. Smith, M. Greenblatt and W. McCarroll, J. Vac. Sci. Technol. A 12, 2196 (1994)CrossRefGoogle Scholar
  16. 13a.
    V.E. Henrich, Rep. Prog. Phys. 48, 1481 (1985);CrossRefGoogle Scholar
  17. 13b.
    V.E. Henrich in Defects in Solids, Ed. A.V. Chadwick and M. Terenzi (Plenum, New York, 1986).Google Scholar
  18. 14.
    T.E. Madey, D.E. Ramaker and R. Stockbauer, Ann. Rev. Phys. Chem. 35, 215 (1984).CrossRefGoogle Scholar
  19. 15.
    M. L. Knotek and P. J. Feibelman, Phys. Rev. Lett., 40, 964 (1978).CrossRefGoogle Scholar
  20. 16.
    R.L. Benbow, M.R. Thuler and Z. Hurych, Phys. Rev. Lett. 49, 1264 (1982).CrossRefGoogle Scholar
  21. 17.
    K. Breuer, K.E. Smith, M. Greenblatt, W. McCarroll, and S.L. Hulbert, Solid State Comm. 94, 601 (1995).CrossRefGoogle Scholar
  22. 18a.
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, and F. Lévy, Phys. Rev. Lett. 67, 3144 (1992);CrossRefGoogle Scholar
  23. 18b.
    B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, C. Schlenker and Y. Petroff, Europhys. Lett. 19, 525 (1992).CrossRefGoogle Scholar
  24. 19.
    K. Breuer, K.E. Smith, M. Greenblatt and W. McCarroll, (unpublished).Google Scholar
  25. 20a.
    J.M. Luttinger, J. Math. Phys. 4, 1154 (1963);Google Scholar
  26. 20b.
    S. Tomonaga, Prog. Theor. Phys. 5, 349 (1950);Google Scholar
  27. 20c.
    J. Solyom, Adv. in Phys. 28, 201 (1979);CrossRefGoogle Scholar
  28. 20d.
    HJ. Schulz, Int. J. Mod. Phys. 5, 57 (1991).CrossRefGoogle Scholar
  29. 21.
    K.E. Smith and V.E. Henrich, Phys. Rev. B 50, 1382 (1994).CrossRefGoogle Scholar
  30. 22.
    A. Fujimori, K. Kawakami, and N. Tsuda, Phys. Rev. B 38, 7889 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Kevin E. Smith
    • 1
  • Klaus Breuer
    • 1
  • Cristian Stagarescu
    • 1
  • Martha Greenblatt
    • 2
  • William McCarroll
    • 2
  • Kandalam Ramanujachary
    • 2
  1. 1.Department of PhysicsBoston UniversityBostonUSA
  2. 2.Department of ChemistryRutgers UniversityNew BrunswickUSA

Personalised recommendations