Dark Matter Searches for Monopoles and WIMPs

  • Blas Cabrera
Part of the NATO ASI Series book series (NSSB, volume 352)


By the mid-1970’s, there had been several theoretical suggestions that the dark matter observed kinematically around galaxies and in clusters of galaxies could be made up primarily of an undiscovered elementary particle. Our group took this suggestion seriously and by early 1981 we had begun a search for GUT (grand unification theory) magnetic monopoles in the cosmic rays under the hypothesis that they make up the dominant mass of our galactic halo. We used superconductivity and cryogenic technologies to mount uniquely sensitive inductive detectors. In the first part of this paper we summarize a decade of experiments on three generations of detectors. By the mid-1980’s, there were strong theoretical reasons for extending the search to another type of elementary particle, broadly called weakly interacting massive particles or WIMPs of which the lightest supersymmetric particle or neutralino is the most studied possibility. The second part of the paper summarizes the new cryogenic technologies, also using superconductivity, which have been developed to search for WIMPs, and the status of the dark matter experiment now being installed in the Stanford Underground Facility (SUF) by a collaboration including UC Berkeley (CfPA), LBL, Stanford, UC Santa Barbara, and Baksan.


Dark Matter Magnetic Charge Particle Flux Magnetic Monopole Candidate Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Glashow, “Gauge Theories and Experiments at High Energies,” Proceedings of the Twenty-First Scottish Universities Summer School in Physics 1980, St. Andrews, Scotland, eds. K. C. Bowler and D. G.Sutherland, p. 433.Google Scholar
  2. 2.
    B. Cabrera, Phys. Rev. Lett. 48 (1982) 1378.ADSCrossRefGoogle Scholar
  3. 3.
    B. Cabrera, M. Taber, R. Gardner and J. Bourg, Phys. Rev. Lett. 51 (1983) 1933.ADSCrossRefGoogle Scholar
  4. 4.
    M. E. Huber, B. Cabrera, M. A. Taber, and R. D. Gardner, Phys. Rev. Lett. 64 (1990) 835.ADSCrossRefGoogle Scholar
  5. 5.
    R. D. Gardner, B. Cabrera, M. E. Huber, M. A. Taber and J. Bourg, Phys. Rev. D44 (1991) 622.ADSGoogle Scholar
  6. 6.
    M. E. Huber, B. Cabrera, M. A. Taber and R. D. Gardner, Phys. Rev. D44 (1991) 636.ADSGoogle Scholar
  7. 7.
    See for example: M. Tinkham, “Introduction to Superconductivity,” (Krieger, Huntington, NY, 1980).Google Scholar
  8. 8a.
    P. A. M. Dirac, Proc. Rog. Soc. A133, 60 (1931)ADSCrossRefGoogle Scholar
  9. 8b.
    P. A. M. Dirac Phys. Rev. 74 (1948) 817.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 9.
    For reviews see: J. R Preskill, Phys. Rev. Lett. 19 (1979) 1365ADSCrossRefGoogle Scholar
  11. 9b.
    G. Lazarides, Q. Shafi and T. F. Walsh, Phys. Lett. lOOB (1981) 21ADSGoogle Scholar
  12. 9c.
    P. Goddard and D. I. Olive, Rep. Prog. Phys. 41 (1978) 1357.ADSCrossRefGoogle Scholar
  13. 10.
    See review article: D. E. Groom, Phys. Rep. 140 (1986) 323.ADSCrossRefGoogle Scholar
  14. 11a.
    B. Cabrera, Superconductive Electronics, AIP Conference Series No. 41, p. 73Google Scholar
  15. 11b.
    “Near Zero: New Frontiers of Physics,” eds. J. D. Fairbank, B. S. Deaver, C. W. F. Everitt and P. F. Michelson, (Freeman, 1988).Google Scholar
  16. 12.
    Y. Nambu, Physica 126B (1984) 328.Google Scholar
  17. 13a.
    B. Cabrera, “Magnetic Monopoles,” Eds. R. A. Carrigan and W. P. Trower, (Plenum, 1983), p. 175Google Scholar
  18. 13b.
    B. Cabrera, and J. L. Terman, “ELECTROMAGNETISM: Physics Simulations,” Volume 2, (Intellimation, Santa Barbara, 1991) Monopole Program.Google Scholar
  19. 14.
    B. Cabrera, R. Gardner, and R. King, Phys. Rev. D31 (1985) 2199.ADSGoogle Scholar
  20. 15.
    S. Bermon, P. Chaudhari, C. C. Chi, C. D. Tesche, and C. C. Tsuei, Phys. Rev. Lett. 55 (1985) 1850.ADSCrossRefGoogle Scholar
  21. J. Incandela, M. Campbell, H. Frisch, S. Somalwar, M. Kuchnir, and H. R. Gustafson, Phys. Rev. Lett. 53 (1984) 2067ADSCrossRefGoogle Scholar
  22. S. Somalwar, H. Frisch, J. Incandela, and M. Kuchnir, Nucl. Inst, and Method. A226 (1984)341.ADSCrossRefGoogle Scholar
  23. S. Bermon, C. C. Chi, C. C. Tsuei, J. R. Rozen, P. Chaudhari, M. W. McElfresh, and A. Prodell, Phys. Rev. Lett. 64(1990)839.ADSCrossRefGoogle Scholar
  24. 18.
    For a review see: J. Preskill, Ann. Rev. Nucl. Part. Sci. 34 (1984) 461.ADSCrossRefGoogle Scholar
  25. 19.
    J. Arons and R. D. Blanford, Phys Rev. Lett. 50 (1983) 544.ADSCrossRefGoogle Scholar
  26. 20.
    D. Chernoff, S. L. Shapiro, and I. Wasserman, Astrophys. J. 304 (1986) 799.ADSCrossRefGoogle Scholar
  27. 21a.
    S. Ahlen, et al., Phys. Rev. Lett. 72 (1994) 608ADSCrossRefGoogle Scholar
  28. 21b.
    S. Ahlen, et al., Nucl. Instrum. Methods Phys. Res. A324 (1993) 337.ADSGoogle Scholar
  29. K. Griest, M. Kamionkowski and G. Jungman, in preparation.Google Scholar
  30. 23a.
    B. Cabrera, L. M. Krauss and F. Wilczek, Phys. Rev. Lett. 55 (1985) 25ADSCrossRefGoogle Scholar
  31. 23b.
    B. Cabrera, B. L. Dougherty, and K. D. Irwin, “Frontiers of Neutrino Astrophysics,” Frontiers Science Series No. 5, Y. Suzuki and K. Nakamura, eds., pp. 399–409 (Universal Academy Press, Inc., Tokyo, 1993).Google Scholar
  32. 24.
    A. DaSilva, B. Pritychenko, B. L. Dougherty, M. Gray, A. Lu, A. Smith, D. S. Akerib, D. Bauer, B. Cabrera, D. O. Caldwell, R. E. Lanou, B. Sadoulet, and S. Yellin, Nucl. Instr. and Method. A354 (1995) 553.ADSGoogle Scholar
  33. 25.
    M. Chen, V. M. Novikov, and B. L. Dougherty, Nucl. Instr. and Method. A336 (1993) 232.ADSCrossRefGoogle Scholar
  34. 26.
    T. Shutt, et al., Phys. Rev. Lett. 69 (1992) 3531.ADSCrossRefGoogle Scholar
  35. M. J. Perm, B. L. Dougherty, and B. Cabrera, LTD5, J. Low Temp. Phys. 93(3/4), (1993) 423Google Scholar
  36. 27b.
    M. J. Perm, B. L. Dougherty, B. Cabrera, and D. L. Sisson, Stanford Low Temperature Group Preprint BC137–95.Google Scholar
  37. 28.
    A. T. Lee, B. Cabrera, B. A. Young, and N. I. Maluf, LTD-4 (IVth International Workshop on Low Temperature Detectors, Oxford, 1991), eds N. E. Booth and G. L. Salmon (Editions Frontires, France, 1992), pp. 217–227.Google Scholar
  38. 29.
    K. D. Irwin, S. W. Nam, B. Cabrera, B. Chugg, G. S. Park, R. P. Welty, and J. M. Martinis, Applied Superconductivity '94 Proceedings, IEEE Trans, on Supercond., in press; and Kent D. Irwin, Appl. Phys. Lett., in press.Google Scholar
  39. A. T. Lee, B. Cabrera, B. L. Dougherty, M. J. Penn, and J. G. Pronko, Phys. Rev. Lett. 71 (1993) 1395ADSCrossRefGoogle Scholar
  40. K. D. Irwin, B. Cabrera, B. Tigner, and S. Sethuraman, LTD-4 (IVth International Workshop on Low Temperature Detectors, Oxford, 1991), eds N. E. Booth and G. L. Salmon (Editions Frontires, France, 1992), pp. 209–215; and K. D. Irwin, B. Cabrera and B. Chugg, Stanford Low Temperature Group Preprint BC140–95.Google Scholar
  41. 31a.
    R. P. Welty and J. M. Martinis, IEEE Trans. Mag. 27 (1991) 2924ADSCrossRefGoogle Scholar
  42. 31b.
    R. P. Welty and J. M. Martinis, IEEE Trans. Appl. Supercond. 3 (1993) 2605. The SQUID thin-film circuits were manufactured by HYPRES, Inc. in Elmsford, NYADSCrossRefGoogle Scholar
  43. 32.
    K. D. Irwin, S. Nam, B. Cabrera, B. Chugg, and B. Young, Stanford Low Temperature Group Preprints BC141–95 and BC142–95.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Blas Cabrera
    • 1
  1. 1.Physics DepartmentStanford UniversityStanfordUSA

Personalised recommendations