Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 352))

Abstract

Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in the world of elementary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.’t Hooft, ”Renormalization of Gauge Theories,” in Proceedings of the Third International Symposium on the History of Particle Physics:”The Rise of the Standard Model,” SLAC, June 24–27, 1992.

    Google Scholar 

  2. H. A. Bethe, Phys. Rev. 72 (1947) 339.

    Article  ADS  Google Scholar 

  3. J. Schwinger, Phys. Rev. 73 (1948) 416

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Schwinger, Phys. Rev. 74 (1948) 1439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. S. Tomonaga, Progr. Theor. Phys. 1 (1946) 27.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. R. P. Feynman, Rev. mod. Phys. bf 20 (1948) 367;

    Google Scholar 

  7. R. P. Feynman Phys. Rev. 74 (1948) 939, 1430.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. F. J. Dyson, Phys. Rev. 85 (1952) 631.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R. L. Mills and C. N. Yang, Suppl. Progr. Theor. Phys. 37 and 38 (1966) 507.

    Article  ADS  Google Scholar 

  10. H. Kramers, Quanten theorie des Elektrons und der Strahlung, Akad. Verlag, Leipzig (transi. D. ter Haar, North Holland, Amsterdam, 1957); id, A review talk at the Shelter Island conference (June 1947), unpubl. See S. S. Schweber,”A short history of Shelter Island I,” in Shelter Island II (eds. R. Jackiw, N. N. Khuri, S. Weinberg and E. Witten, MIT Press, Cambridge, Mass, 1985). See also his Collected scientific papers (Amsterdam 1956) 333 and 347.

    Google Scholar 

  11. R. de L. Kronig, Journ. Opt. Soc. Amer. 12 (1926) 547.

    Article  ADS  Google Scholar 

  12. N. G. van Kampen, Ned. T. Natuurk. 24, Januari 1958 and Februari 1958 (in Dutch).

    Google Scholar 

  13. T. Y. Cao and S. S. Schweber,”The Conceptual Foundation and Philosophical Aspects of Renormalization Theory,” Brandeis and Harvard Universities preprint.

    Google Scholar 

  14. M. Veltman, Physica 29 (1963) 186;

    Article  MathSciNet  MATH  Google Scholar 

  15. G.’t Hooft and M. Veltman,”DIAGRAMMAR,” CERN Report 73/9 (1973), reprinted in”Particle Interactions at Very High Energies,” Nato Adv. Study Inst. Series, Sect. B, vol. 4b, p. 177;

    Google Scholar 

  16. G.’t Hooft,”Gauge Field Theory,” in Proceedings of the Adriatic Meeting, Rovinj 1973, ed. M. Martinis et al, North Holland/Am. Elsevier, p.321;

    Google Scholar 

  17. G.’t Hooft,”DIAGRAMMAR” and Dimensional Renormalization, in”Renormalization and Invariance in Quantum Field Theory,” Capri Summer Meeting July 1973, ed. E. R. Caianiello, Plenum New York 1974, p. 247.

    Google Scholar 

  18. O. Klein, in “New Theories in Physics,” Conference organised in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee, Warsaw, May 30th - June 3rd, 1938.

    Google Scholar 

  19. C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191, see also R. Shaw, Cambridge Ph.D. Thesis, unpublished.

    Article  MathSciNet  ADS  Google Scholar 

  20. C. N. Yang, Selected Papers 1945–1980 With Commentary, Freeman and Co., San Francisco 1983, p. 20.

    Google Scholar 

  21. R. P. Feynman, Acta Phys. Polonica 24 (1963) 697.

    MathSciNet  Google Scholar 

  22. S. L. Glashow, Nucl. Phys. 22 (1961) 579.

    Article  Google Scholar 

  23. M. Veltman, Nucl. Phys. B7 (1968) 637;

    Article  ADS  Google Scholar 

  24. J. Reiff and M. Veltman, Nucl. Phys. B13 (1969) 545;

    Article  ADS  Google Scholar 

  25. M. Veltman, Nucl. Phys. B21 (1970) 288.

    ADS  Google Scholar 

  26. Proceedings of the Cargèse Lectures in Physics, Vol. 5, Gordon and Breach, New York, London, Paris, 1972, ed. D. Bessis.

    Google Scholar 

  27. M. Gell-Mann and M. Lévy, Nuovo Cim. 16 (1960) 705.

    Article  MATH  Google Scholar 

  28. B. W Lee, Nucl Phys. B9 (1969) 649;

    Article  ADS  Google Scholar 

  29. B. W. Lee, “Chiral Dynamics,” Gordon and Breach, New York, London, Paris 1972.

    Google Scholar 

  30. J.-L. Gervais and B. W Lee, Nucl. Phys. B12 (1969) 627.

    Article  ADS  Google Scholar 

  31. K. Symanzik, Let. Nuovo Cim. 2 (1969) 10

    Article  Google Scholar 

  32. K. Symanzik Commun. Math. Phys. 16 (1970) 48.

    Article  MathSciNet  ADS  Google Scholar 

  33. L. D. Faddeev and V N. Popov, Phys. Lett. 25B (1967) 29. See also:

    ADS  Google Scholar 

  34. L. D. Faddeev, Theor. and Math. Phys. 1 (1969) 3 (in Russian)

    Article  MathSciNet  ADS  Google Scholar 

  35. L. D. Faddeev, Theor. and Math. Phys. 1 (1969) 1 (Engl. transi).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. S. Mandelstam, Phys. Rev. 175 (1968) 1580, 1604.

    Article  ADS  Google Scholar 

  37. G.’t Hooft, Nucl. Phys. B33 (1971) 173.

    Article  ADS  Google Scholar 

  38. C. Becchi, A. Rouet and R. Stora, Commun. Math. Phys. 42 (1975) 127;

    Article  MathSciNet  ADS  Google Scholar 

  39. C. Becchi, A. Rouet and R. Stora Ann. Phys.(N. Y.) 98 (1976) 287. See also:

    Article  MathSciNet  ADS  Google Scholar 

  40. I. V Tyutin, Lebedev Prepr. FIAN39 (1975), unpubl.;

    Google Scholar 

  41. R. Stora, Cargèse lectures 1976;

    Google Scholar 

  42. J. Thieri-Mieg, J. Math. Phys. 21 (1980) 2834;

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Beaulieu, and J. Thieri-Mieg, Nucl. Phys. B197 (1982) 477.

    Article  ADS  Google Scholar 

  44. S. L. Adler, Phys. Rev. 177 (1969) 2426; see also

    Article  ADS  Google Scholar 

  45. H. Fukuda and Y Miyamoto, Progr. Theor. Phys. 4 (1949) 347.

    Article  ADS  Google Scholar 

  46. J. S. Bell and R. Jackiw, Nuovo Cim. A60 (1969) 47.

    Article  ADS  Google Scholar 

  47. A. Slavnov, Theor. Math. Phys. 10 (1972) 153 (in Russian),

    Google Scholar 

  48. A. Slavnov Theor. Math. Phys. 10 (1972) 99 (Engl. Transi.)

    Article  Google Scholar 

  49. J. C. Taylor, Nucl. Phys. B33 (1971) 436.

    Article  ADS  Google Scholar 

  50. G.’t Hooft, Nucl Phys. B35 (1971) 167.

    Article  ADS  Google Scholar 

  51. G.’t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189.

    Article  ADS  Google Scholar 

  52. M. Veltman, invited talk given at the Third International Symposium on the History of Particle Physics, SLAC, June 24–27, 1992, section 15.

    Google Scholar 

  53. K. G. Wilson, Phys. Rev. D3 (1971) 1818;

    ADS  Google Scholar 

  54. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28 (1972) 240.

    Article  ADS  Google Scholar 

  55. C. Bollini and J. Giambiagi, Nuovo Cim. 12B (1972) 20.

    Google Scholar 

  56. J. Ashmore, Nuovo Cim. Lett 4 (1972) 289.

    Article  Google Scholar 

  57. S. L. Adler and W. A. Bardeen, Phys. Rev. 182 (1969) 1517;

    Article  ADS  Google Scholar 

  58. W A. Bardeen, Phys. Rev. 184 (1969) 1848;

    Article  ADS  Google Scholar 

  59. D. G. Boulware, Phys. Rev. D11 (1975) 1404;

    MathSciNet  ADS  Google Scholar 

  60. D. G. Boulware Phys. Rev. D13 (1976) 2169.

    ADS  Google Scholar 

  61. S. Weinberg, Phys. Rev. Let. 19 (1967) 1264.

    Article  ADS  Google Scholar 

  62. A. Salam and J. C. Ward, Phys. Lett. 13 (1964) 168;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. A. Salam, in: Elementary Particle Theory, ed. N. Svartholm (Stockholm, 1968).

    Google Scholar 

  64. Ch. Llewellyn-Smith, Phys. Lett. B46 (1973) 233.

    ADS  Google Scholar 

  65. J. Cornwall, D. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30 (1973) 1268.

    Article  ADS  Google Scholar 

  66. G.’t Hooft, announcement made at the Colloquium on Renormalization of Yang-Mills Fields, C. N. R. S., Marseille, June 19–23, 1972;

    Google Scholar 

  67. D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343;

    Article  ADS  Google Scholar 

  68. H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346;

    Article  ADS  Google Scholar 

  69. G.’t Hooft, Nucl. Phys. B61 (1973) 455;

    Article  ADS  Google Scholar 

  70. H. D. Politzer, Phys. Rep. 14c (1974) 129.

    Article  ADS  Google Scholar 

  71. G.’t Hooft, Nucl. Phys. B79 (1974) 276;

    Article  ADS  Google Scholar 

  72. G.’t Hooft Nucl. Phys. B105 (1976) 538.

    Article  ADS  Google Scholar 

  73. A. M. Polyakov, JETP Lett. 20 (1974) 194.

    ADS  Google Scholar 

  74. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. 59B (1975) 85.

    MathSciNet  ADS  Google Scholar 

  75. G.’t Hooft, Phys. Rev. Lett. 37 (1976) 8; 3432;

    Article  ADS  Google Scholar 

  76. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172;

    Article  ADS  Google Scholar 

  77. C. G. Callan Jr., R. F. Dashen and D. J. Gross, Phys. Lett. 63B (1976) 334;

    ADS  Google Scholar 

  78. C. G. Callan Jr., R. F. Dashen and D. J. Gross, Phys. Lett. D17 (1978) 2717.

    ADS  Google Scholar 

  79. G.’t Hooft, Phys. Rev. D14 (1976) 3432;

    ADS  Google Scholar 

  80. Err. Phys. Rev. D18 (1978) 2199.

    Google Scholar 

  81. K. Symanzik, Nuovo Cim. Lett. 6 (1973) 77

    Article  Google Scholar 

  82. K. Symanzik, Commun. Math. Phys. 18 (1970) 227

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. K. Symanzik, Commun. Math. Phys. 23 (1971) 49

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. K. G. Wilson, Phys. Rev. D3 (1971) 1818

    ADS  Google Scholar 

  85. G.’t Hooft, Nucl. Phys. B62 (1973) 444;

    Article  ADS  Google Scholar 

  86. G.’t Hooft, Nucl. Phys. B254 (1985) 11;

    Article  ADS  Google Scholar 

  87. G.’t Hooft, Phys. Lett. 109B (1982) 474;

    ADS  Google Scholar 

  88. G.’t Hooft Phys. Lett. 119B (1982) 369.

    ADS  Google Scholar 

  89. G.’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré, 20 (1974) 69.

    ADS  Google Scholar 

  90. S. Mandelstam, Phys. Rep. 23 (1976) 237;

    Article  ADS  Google Scholar 

  91. H. J. Lipkin, Phys. Lett. 45B (1973) 267;

    ADS  Google Scholar 

  92. M. Fritsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. 47B (1973) 365;

    ADS  Google Scholar 

  93. C. G. Callan, R. Dashen and D. Gross, Phys. Lett. 66B (1977) 375;

    ADS  Google Scholar 

  94. C. G. Callan, R. Dashen and D. Gross, Phys. Lett. 78B (1978) 307;

    ADS  Google Scholar 

  95. A. M. Polyakov, Nucl Phys. B120 (1977) 429;

    Article  MathSciNet  ADS  Google Scholar 

  96. G.’t Hooft, Phys. Scripta 24 (1981) 841;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. G.’t Hooft, Nucl. Phys. B190 (1981) 455.

    Article  ADS  Google Scholar 

  98. K. Osterwalder and R. Schrader, Commun. Math. Phys. 31 (1973) 83;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. K. Osterwalder and R. Schrader, Commun. Math. Phys. 42 (1975) 281.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  100. T. Appelquist and J. Carazzone, Phys. Rev. D11 (1975) 2856.

    ADS  Google Scholar 

  101. G.’t Hooft, Nucl. Phys. B72 (1974) 461;

    Article  ADS  Google Scholar 

  102. G.’t Hooft, Nucl. Phys. B75 (1974) 461

    Article  ADS  Google Scholar 

  103. G.’t Hooft, Commun. Math. Phys. 86 (1982) 449;

    Article  ADS  Google Scholar 

  104. G.’t Hooft, Commun. Math. Phys. 88 (1983) 1.

    Article  ADS  Google Scholar 

  105. G.’t Hooft, in “Recent Developments in Gauge Theories,” Cargèse 1979, ed. G.’t Hooft et al., Plenum Press, New York, 1980, Lecture III,

    Google Scholar 

  106. G.’t Hooft in: “Dynamical Symmetry Breaking, a Collection of reprints,” ed. A. Fahri et al., World Scientific, Singapore, Cambridge, 1982, p. 345.

    Google Scholar 

  107. A. Ringwald, Nucl. Phys. B330 (1990) 1;

    Article  ADS  Google Scholar 

  108. L. McLerran, A. Vainshtein and M. Voloshin, Phys. Rev. D42 (1990) 171.

    ADS  Google Scholar 

  109. V. Rubakov, JETP Lett 33 (1981) 644;

    ADS  Google Scholar 

  110. V. Rubakov Nucl. Phys. B 203 (1982) 311;

    Article  ADS  Google Scholar 

  111. C. G. Callan, Phys. Rev. D25 (1982) 2141,

    ADS  Google Scholar 

  112. C. G. Callan, Phys. Rev. D26 (1982) 2058;

    ADS  Google Scholar 

  113. C. G. Callan, Nucl. Phys. B212 (1983) 391.

    Article  ADS  Google Scholar 

  114. G.’t Hooft, in”The Whys of Subnuclear Physics,” ed. A. Zichichi, Plenum, New York/London, p. 943.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Hooft, G. (1996). Gauge Theory and Renormalization. In: Newman, H.B., Ypsilantis, T. (eds) History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series, vol 352. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1147-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1147-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8448-2

  • Online ISBN: 978-1-4613-1147-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics