Advertisement

Development of Ring Imaging Cherenkov Counters for Particle Identification

  • T. Ypsilantis
  • J. Seguinot
Part of the NATO ASI Series book series (NSSB, volume 352)

Abstract

The principles of Cherenkov ring imaging for particle identification in High Energy Physics are presented with a discussion of their domain of application and comparison with other methods of velocity determination.

The use of gas phase photoionization for detection of single UV Cherenkov photons has lead to a broad range of ring imaging detectors. The development over the past 17 years of the different detector types, their performance and their application in specific experiments is recounted.

The possible use of ring imaging detectors for both velocity and momentum determination in specific counter geometries is presented.

Keywords

Neutrino Interaction Neutrino Beam Spherical Mirror Anode Wire Threshold Counter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    L. Mallet, Compte Rendu 183 (1926) 274;Google Scholar
  2. 1b.
    L. Mallet, Compte Rendu 187 (1928) 222;Google Scholar
  3. 1c.
    L. Mallet, Compte Rendu 188 (1929) 445.Google Scholar
  4. 2a.
    P. A. Cherenkov, Doklady AN SSSR 3 (1936) 413Google Scholar
  5. 2b.
    P. A. Cherenkov, Doklady AN SSSR 14 (1937) 103;Google Scholar
  6. 2c.
    P. A. Cherenkov, Doklady AN SSSR 14 (1937) 99;Google Scholar
  7. 2d.
    P. A. Cherenkov, Doklady AN SSSR 20 (1938) 653;Google Scholar
  8. 2e.
    P. A. Cherenkov, Doklady AN SSSR 21 (1938) 117;Google Scholar
  9. 2f.
    P. A. Cherenkov, Doklady AN SSSR 21 (1938) 323;Google Scholar
  10. 2g.
    and Trudy Fizicheskogo, Institula AN SSSR 2 (1944) 4. See also Phys. Rev. 52 (1937) 378 for an English language publication of his early work.Google Scholar
  11. 3.
    I.E. Tamm and I. M. Frank, Doklady AN SSSR 14 (1937) 107.Google Scholar
  12. 4.
    V.L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 10 (1940) 589 and 608.Google Scholar
  13. 5.
    G.B. Collins and V.G. Reiling, Phys. Rev. 54 (1938) 499.ADSCrossRefGoogle Scholar
  14. 6.
    H.O. Wyckoff and J. E. Henderson, Phys. Rev. 64 (1943) 1.ADSCrossRefGoogle Scholar
  15. 7.
    D. Bartlett et al., Nucl. Instr. and Meth. A260 (1987) 55.ADSGoogle Scholar
  16. 8.
    A. Roberts, Nucl. Instr. and Meth. 9 (1960) 55.ADSCrossRefGoogle Scholar
  17. 9a.
    S. K. Poultney et al., Rev. Sci. Instr. 33 (1962) 574;ADSCrossRefGoogle Scholar
  18. 9b.
    S. K. Nucl. Instr. and Meth. 20 (1963) 267.CrossRefGoogle Scholar
  19. 10.
    D. M. Binnie et al., Nucl. Instr. and Meth. 21 (1963) 267.CrossRefGoogle Scholar
  20. 11.
    P. Iredale et al., IEEE. Trans. NS11 (1964) 139.ADSGoogle Scholar
  21. 12.
    R. Giese et al., Nucl. Instr. and Meth. 88 (1970) 83.ADSCrossRefGoogle Scholar
  22. 13.
    J. Seguinot, T. Ypsilantis, Nucl. Instr. and Meth. 142 (1977) 377.ADSCrossRefGoogle Scholar
  23. 14.
    N. Fujiwara et al., Nucl. Instr. and Meth. A263 (1988) 381.ADSGoogle Scholar
  24. 15.
    A. P. McManus et al., Proc. Symp. on Particle ID at High hum. Hadron Colliders, FNAL, 4/89, 597; Also M. S. Alam et al., 629.Google Scholar
  25. 16.
    T.Ypsilantis, Physica Scripta 23 (1981) 371; See also T.Ypsilantis, CERN-EP/89–150; and Proc. Symp. on Particle ID at High Lum. Hadron Colliders. FNAL, 4/89, p33.Google Scholar
  26. 17.
    T. Ypsilantis, J. Seguinot, Nucl. Instr. and Meth., A343 (1994) 30.ADSGoogle Scholar
  27. 18.
    J. Seguinot, T. Ypsilantis, Nucl. Instr. and Meth., A343 (1994) 1.ADSGoogle Scholar
  28. 19.
    G. Charpak and F. Sauli, Phys. Lett., 78B (1978) 523.ADSGoogle Scholar
  29. 20.
    S. Durkin, A. Honma & D.W.G.S. Leith, SLAC-PUB 2186,1978.Google Scholar
  30. 21.
    R. Gilmore et al., Nucl. Instr. and Meth., 157 (1978) 507.ADSCrossRefGoogle Scholar
  31. 22.
    G. Charpak et al., Nucl. Instr. and Meth., 164 (1979) 419.ADSCrossRefGoogle Scholar
  32. 23.
    J. Seguinot, J. Tocqueville and T. Ypsilantis, Nucl. Instr. and Meth., 173 (1980) 283.ADSCrossRefGoogle Scholar
  33. 24.
    T. Ekelof, J. Seguinot, J. Tocqueville and T. Ypsilantis, Physica Scripta, 23 (1981) 718.ADSCrossRefGoogle Scholar
  34. 25.
    D. Saloman and A. Scala, J. Chem. Phys. 62 (1975) 1469.ADSCrossRefGoogle Scholar
  35. 26.
    R.A. Holroyd et al., Nucl. Instr. and Meth. A261 (1987) 440.ADSGoogle Scholar
  36. 27.
    J. Seguinot, “Les Compteurs Cherenkov”, Lectures given at l’Ecole Joliot-Curie 1988, Maubuisson, France. Published by Les Editions de Physique, 1989.Google Scholar
  37. 28.
    G. Charpak et al., Nucl. Instr. and Meth. 180 (1981) 387.ADSCrossRefGoogle Scholar
  38. 29a.
    G. Coutrakon et al., IEEE Trans. Nucl. Sci. NS-29 (1982) 323;ADSCrossRefGoogle Scholar
  39. 29b.
    Also Nucl. Instr. and Meth. 205 (1983) 403 and 216 (1983) 79.CrossRefGoogle Scholar
  40. 30.
    A. Breskin et. al., IEEE Trans. Nucl. Sci. NS-35 (1988) 404.Google Scholar
  41. 31a.
    D. F Anderson, Nucl. Instr. and Meth. 178(1980) 125;ADSCrossRefGoogle Scholar
  42. 31b.
    First synthesis was by H.E. Winberg, J. Am. Chem. Soc. 87(1965)2054.CrossRefGoogle Scholar
  43. 32.
    Y Nakato et al., Bull. Chem. Soc. Jap. 45 (1971) 1299.CrossRefGoogle Scholar
  44. 33.
    S. Ekelin, Thesis 1981, Royal Inst, of Technology, Stockholm.Google Scholar
  45. 34.
    E. Barrelet et. al., Nucl. Instr. and Meth. 200 (1982) 219.CrossRefGoogle Scholar
  46. 35.
    B. Lund-Jensen PhD thesis 1988, Univ. Uppsala, Sweden; Early reports are in Proc. Int. Conf. on High Energy Physics, Lisbon 7/81, 1066 & Proc. Isabelle 1981 Summer Wkshop at BNL, NY, 1378.Google Scholar
  47. 36.
    R. J. Apsimon et al., IEEE. Trans. NS33 (1986) 122; Also RAL PPESP/82/24, Proposal 231, Add. 4 and M. Davenport et. al., IEEE Trans. Nucl. Sci. NS30 (1983) 35.ADSGoogle Scholar
  48. 37.
    CERN/LEPC/82–8, 31/1/82 and LEPC 82–16 25/3/82. See also the DELPHI Technical Proposal, CERN-LEPC 83–3 and the DELPHI Progress Report, CERN-LEPC 84–16.Google Scholar
  49. 38.
    SLD Design Reports, SLAC 273 and 274 (1984); and V. Ashford et.al., IEEE. Trans. NS33 (1986) 113.Google Scholar
  50. 39.
    D. Dresselhaus and R. Fohrmann, Nucl. Instr. and Meth. A236 (1985) 274.ADSGoogle Scholar
  51. 40.
    J. Seguinot et al., CERN-LEPC 82/59, DELPHI 82/23 and CERN Academic Training Notes, Nov. 1982.Google Scholar
  52. 41.
    O. Bottner et al., Nucl. Instr. and Meth. A257 (1987) 580.ADSGoogle Scholar
  53. 42.
    R. Arnold et al., Nucl. Instr. and Meth. A252 (1986) 188.ADSGoogle Scholar
  54. 43.
    R. Arnold et al., Nucl. Instr. and Meth. A270 (1988) 255.ADSGoogle Scholar
  55. 44.
    R. Arnold et al., Nucl. Instr. and Meth. A270 (1988) 289.ADSGoogle Scholar
  56. 45.
    E. G. Anassontzis et. al., Nucl. Instr. and Meth. A323 (1992) 351.ADSGoogle Scholar
  57. 46.
    P. Baillon, Proc. 26th Int. Conf. High Energy Phys., Dallas, Texas, 8/92, pl867.Google Scholar
  58. 47.
    K. Abe et. al., Nucl. Instr. and Meth. A343 (1994) 74.ADSGoogle Scholar
  59. 48.
    R. J. Apsimon et. al., IEEE. Trans. Nucl. Sci. NS33 (1986) 122.ADSCrossRefGoogle Scholar
  60. 49.
    W. Beusch et. al., Nucl. Instr. and Meth. A323 (1992) 373.ADSGoogle Scholar
  61. 50.
    H.-W. Siebert et. al., Nucl. Instr. and Meth. A343 (1994) 60.ADSGoogle Scholar
  62. 51.
    S. Swordy, Nucl. Instr. and Meth. A343 (1994) 52.ADSGoogle Scholar
  63. 52a.
    G. Coutrakon et al., IEEE Trans. Nucl. Sci. NS33 (1986) 205;ADSCrossRefGoogle Scholar
  64. 52b.
    G. Coutrakon et al. IEEE Trans. Nucl. Sci. NS35 (1988) 205.Google Scholar
  65. 53a.
    R. Baur et. al., Nucl. Instr. and Meth. A343 (1994) 99.Google Scholar
  66. 53b.
    See also P. Fischer et. al., IEEE Trans. Nucl. Sci. NS35 (1988) 432.ADSCrossRefGoogle Scholar
  67. 54.
    R. Baur et. al., Nucl. Instr. and Meth. A343 (1994) 231.ADSGoogle Scholar
  68. 55.
    A. Braem et. al., Nucl. Instr. and Meth. A343 (1994) 163.ADSGoogle Scholar
  69. 56.
    R. Arnold et al. Nucl. Instr. and Meth. A314 (1992) 465.ADSGoogle Scholar
  70. 57.
    J. L. Guyonnet et. al., Nucl. Instr. and Meth. A343 (1994) 178.ADSGoogle Scholar
  71. 58a.
    M. French et. al., Nucl. Instr. and Meth. A324 (1993) 511;ADSGoogle Scholar
  72. 58b.
    M. French et. al. Nucl. Instr. and Meth. A343 (1994) 222.ADSGoogle Scholar
  73. 59.
    J. Seguinot et al. Nucl. Instr. and Meth. A350 (1994) 430.ADSGoogle Scholar
  74. 60.
    D. Hatzifotiadou et. al., College de France LPC/94–29.Google Scholar
  75. 61.
    A. Zichichi, “The Gran Sasso Project,” CERN-EP/88–28.Google Scholar
  76. 62.
    S. Katsanevas et. al, Proc. 3rd NESTOR International Conf., 504, 20/10/93, Pylos, Greece. Athens University Press.Google Scholar
  77. 63.
    J. Seguinot, J. Tischhauser and T. Ypsilantis, “Measurements of the transmission of liquid Xenon and Krypton versus photon wavelength.” In preparation.Google Scholar
  78. 64.
    J. Seguinot, J. P. Jobez and T. Ypsilantis, “A RICH Pad Detector with TMAE Gas Photosensor and 2D Blinds.” in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • T. Ypsilantis
    • 1
  • J. Seguinot
    • 1
  1. 1.College de FranceParisFrance

Personalised recommendations