The Detection of Pauli’s Neutrino

  • F. Reines
Part of the NATO ASI Series book series (NSSB, volume 352)


An account is given of the events which led to the detection of the free neutrino starting from the tentative idea to use a nuclear explosion as the neutrino source to the detailed realization of the experiment at a nuclear reactor. The logical requirement for detection of the neutrino at a point remote from its origin is discussed as are some subsequent developments in experimental neutrino physics.


Neutrino Oscillation Neutron Capture Photomultiplier Tube Beta Decay Nuclear Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Pauli Jr. Address to Group on Radioactivity (Tübingen, December 4, 1930) (unpublished; Rappts. Septieme Conseil Phys. Solvay, Bruxelles, 1933 (Gautier-Villars, Paris 1934). E. Fermi, Z. Physik, 88 (1934) 161.CrossRefGoogle Scholar
  2. 2.
    N. Bohr, J. Chem. Soc. (1932) 349.Google Scholar
  3. 3.
    H. A. Bethe and R. E. Peierls, Nature 133 (1934) 532.ADSMATHCrossRefGoogle Scholar
  4. 4.
    The status of the experimental evidence regarding the neutrino was given in 1948 in an excellent review article by Crane. H. R. Crane, Rev. Mod. Phys. 20 (1948) 278. After describing the absorption experiments for beta decay products starting with Ellis and Wooster (1927), Chadwick and Lea, Nahmias (1935) and others, Crane states: “The use of the large neutrino flux from a chain reacting pile to test for the inverse beta decay process has been a subject of conversation among physicists since the advent of the chain reacting pile, and it would be surprising if experiments of this sort were not going forth in one or more of the government laboratories.” Perhaps surprisingly, Cowan and I were little influenced by Crane’s observation and the suggestions for neutrino detection by Pontecorvo and Alvarez. B. Pontecorvo, National Research Council Canada Rept. P. D. 205 (Nov. 20, 1946) (unpublished); L. W. Alvarez, University of California Radiation Lab. Rept., UCRL-328 (1949) (unpublished). A series of ingenious arguments regarding the absorption of solar neutrinos by the sun and earth led Crane to exclude all cross-sections for inverse beta reactions and ionization processes, which were > 10-36 (or possibly > 10-37) with the exception of the region 10-31 to 10-32 cm. The reader is referred to Crane’s article for further details.ADSCrossRefGoogle Scholar
  5. 5.
    H. Kallmann, Phys. Rev. 78 (1950) 62.ADSCrossRefGoogle Scholar
  6. 5a.
    M. Agena, M. Chiozotto, R. Querzoli, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 6 (1949) 626;Google Scholar
  7. 5b.
    G. T. Reynolds, F. B. Harrison, G. Salvini, Phys. Rev. 79 (1950) 720.Google Scholar
  8. 6.
    F. Reines and C. L. Cowan Jr., Phys. Rev., 92 (1953) 830.ADSCrossRefGoogle Scholar
  9. 7.
    F. Reines, Phys. Rev. 117 (1960) 159.ADSCrossRefGoogle Scholar
  10. 8.
    C. L. Cowan Jr., F. Reines, F. C. Harrison, H. W. Kruse, A. D. McGuire, Science 124 (1956) 103.ADSCrossRefGoogle Scholar
  11. 9.
    Following the discovery of the muon neutrino by M. Schwartz and collaborators at Brookhaven (G. Danby, J. M. Gaillard, K. Goulianios, L. M. Lederman, N. Mistry, M. Schwartz, J. Steinberger, Phys. Rev. Lett. 9 (1961) 36;Google Scholar
  12. 9a.
    further experimentation by M. M. Block, H. Burmeister, D. C Cundy, B. Eiben, E. Franzinetti, J. Keren, R. Mollerud, G. Myatt, M. Nikolic, A. O. Lecourtois, M. Paty, D. H. Perkins, C Ramm, K. Schultze, H. Sletten, K. Soop, R. Stump, W. Venus, H. Yoshiki, Phys. Lett. 12 (1964) 281;ADSGoogle Scholar
  13. 9b.
    J. K. Bienlein, A. Bohm, G. Von Dardel, H. Faissner, F. Ferrero, J. M. Gaillard, H. J. Gerber,B. Holm, V. Kaftanov, F. Krienen, R. A. Reinharz, P. G. Seiler, A. Staude, J. Stein, H. J. Steiner, Phys. Lett. 13 (1964) 80 detected reactions due to electron neutrinos.ADSCrossRefGoogle Scholar
  14. 10.
    F. Reines, H. W. Sobel, and E. Pasierb, Phys. Rev. Lett. 45 (1980) 1307;ADSCrossRefGoogle Scholar
  15. 10a.
    F. Boehm, J. F. Cavaignac, F. V. Feilitzsch, A. Hahn, H. E. Henrikson, D. H. Koang, H. Kwon, R. L. Mossbauer, B. Vignon, J. L. Vuilleumeir, Physics Letters, 97B (1980) 310.ADSGoogle Scholar
  16. 11.
    F. Reines, Ann. Rev. Nucl. Sci. 10 (1960) 1.ADSCrossRefGoogle Scholar
  17. 12.
    F. Reines, H. S. Gurr, H. W. Sobel, Phys. Rev. Lett. 37 (1976) 315.ADSCrossRefGoogle Scholar
  18. 13.
    A. Salam, Nuovo Cimento, 5 (1957) 299.MathSciNetCrossRefGoogle Scholar
  19. 14.
    R. P. Feynman and M. Gell-Mann, Phys. Rev. 109 (1958) 193MathSciNetADSMATHCrossRefGoogle Scholar
  20. 14a.
    R. E. Marshak and G. Sudarshan, ibid 109 (1958) 18860.CrossRefGoogle Scholar
  21. 15.
    T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 1671.MathSciNetGoogle Scholar
  22. 16.
    C. Pontecorvo, Zh. Eksp. Teor. Fiz 53 (1967) 1717 (Sov. Phys. J. E. T. P. 26 (1968) 984);Google Scholar
  23. 16a.
    M. Nakagawa, H. Okonogi, S. Sakata, A. Toyoda, Prog. Theor. Phys. 30 (1963) 727.ADSCrossRefGoogle Scholar
  24. 17.
    T. L. Jenkins, F. E. Kinard, and F. Reines, Phys. Rev. 185 (1969) 1599.ADSCrossRefGoogle Scholar
  25. 18.
    E. Pasierb, H. S. Gurr, J. Lathrop, F. Reines, and H. W. Sobel, Phys. Rev. Lett. 43 (1979) 96.ADSCrossRefGoogle Scholar
  26. 19.
    F. Reines and C. L. Cowan, Nature 178 (1956) 446.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • F. Reines
    • 1
  1. 1.University of CaliforniaIrvineUSA

Personalised recommendations