Familial Periodic Paralysis

  • Louis Ptáček
  • Robert C. Griggs
Chapter

Abstract

The periodic paralyses have traditionally been divided into hypokalemic, hyperkalemic, normokalemic, and paramyo-tonic forms.1 Over the past decade, a combination of electrophysiologic and molecular biologic studies have clarified the classification of the disease (Table 31.1). It has become apparent that there are two broad categories of disease: hypokalemic periodic paralysis and hyperkalemic periodic paralysis. All forms of periodic paralysis are either autosomal dominantly inherited or occur as sporadic cases that are probably the result of new mutations. Hyperkalemic periodic paralysis usually results from a disorder of the skeletal muscle, voltage-gated sodium channel. The molecular alterations have been defined for most cases.2,3 It is becoming clear that a number of disorders once considered separate entities are in fact allelic to hyperkalemic periodic paralysis including: paramyotonia congenita4,5 and most recently, a form of myotonia without periodic paralysis that is potassium-sensitive.6,7 There are, however, a small proportion of patients with hyperkalemic periodic analysis that is not allelic.8

Keywords

Iodine Cysteine Lysine Arginine Peri 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riggs, J. E., and Griggs, R. C. (1979). Diagnosis and treatment of the periodic paralyses. Clin. Neuropharmacol. 4:123–138.CrossRefGoogle Scholar
  2. 2.
    Ptáček, L. J., George, A. L., Griggs, R. C., Tawil, R., Kallen, R. G., Barchi, R. L., Robertson, M., and Leppert, M. F. (1991). Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027.PubMedCrossRefGoogle Scholar
  3. 3.
    Rojas, C. V., Wang, J., Schwartz, L. S., Hoffman, E. P., Powell, B. R., and Brown, R. H. (1991). A met-to-val mutation in the skeletal muscle Na+ channel α-subunit in hyperkalaemic periodic paralysis. Nature 354:387–389.PubMedCrossRefGoogle Scholar
  4. 4.
    McClatchey, A., Van den Bergh, P., Pericak-Vance, M., Raskind, W., Verellen, C., McKenna-Yasek, D., Rao, K., Haines, J. L., Bird, T., Brown, R. H., Jr., and Gusella, J. F. (1992). Temperature-sensitive mutations in the III-IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell 68: 769–774.PubMedCrossRefGoogle Scholar
  5. 5.
    Ptáček, L. J., George, A. L., Barchi, R. L., Griggs, R. C., Riggs, J. E., Robertson, M., and Leppert, M. F. (1992). Mutations in an S4 segment of the adult skeletal muscle sodium channel gene cause paramyotonia congenita. Neuron 8:891–897.PubMedCrossRefGoogle Scholar
  6. 6.
    Ptáček, L. J., Griggs, R. C., Tawil, R., Meola, G., McManis, P., Mendell, J., Harris, C, Barohn, R., Spitzer, R., Santiago, F., and Leppert, M. F. (1994). Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita and hyperkalemic periodic paralysis. Neurology 44:1500–1503.PubMedGoogle Scholar
  7. 7.
    Heine, R., Pika, U., and Lehmann-Horn, F. (1993). A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum. Mol Genet. 2:1349–1353.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang, J., Shou, J., Todorovic, S. M., Feero, W. G., Barany, F., Con-wit, R., Hausmanowa-Petrusewicz, I., Fidzianska, A., Arahata, K., Wessel, H. B., Sillen, A., Marks, H. G., Hartlage, P., Galloway, G., Ricker, K., Lehmann-Horn, F., Hayakawa, H., and Hoffman, E. P. (1993). Molecular genetic and genetic correlations in sodium chan-nelopathies: Lack of founder effect and evidence for a second gene. Am. J. Hum. Genet. 52:1074–1084.PubMedGoogle Scholar
  9. 9.
    Ptáček, L. J., Tawil, R., Griggs, R. C, Engel, A. G., Layzer, R. B., Kwieeinski, H., McManis, P., Santiago, F., Moore, M., Fouad, G., Bradley, P., and Leppert, M. F. (1994). Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77:863–868.PubMedCrossRefGoogle Scholar
  10. 10.
    Jurkat-Rott, K., Lehmann-Horn, F., Elbaz, A., Heine, R., Gregg, R. G., Hogan, K., Powers, P. A., Lapie, P., Vale-Santos, J., Weissenbach, J., and Fontaine, B. (1994). A calcium channel mutation causing hypokalemic periodic paralysis. Hum. Mol. Genet. 3:1415–1419.PubMedCrossRefGoogle Scholar
  11. 11.
    Griggs, R. C, and Ptáček, L. J. (1992). The periodic paralyses. Hosp. Pract. 27:123–137.Google Scholar
  12. 12.
    Tyler, F. H., Stephens, F. E., Gunn, F. D., and Perkoff, G. T. (1951). Studies in disorders of muscle. VII. Clinical manifestations and inheritance of a type of periodic paralysis without hypopotassemia. J. Clin. Invest. 30:492–502.CrossRefGoogle Scholar
  13. 13.
    Gamstorp, I., (1956). Adynamia episodica hereditaria. Acta Paediatr. 45(Suppl. 108): 1–126.Google Scholar
  14. 14.
    Ptáček, L. J., Johnson, K. J., and Griggs, R. C. (1993). Mechanisms of disease: Genetics and physiology of the myotonic muscle disorders. N Engl. J. Med. 328:482–489.PubMedCrossRefGoogle Scholar
  15. 15.
    Eulenburg, A. (1886). Über eine familiäre, durch 6 Generationen verfolgbare Form Congenitaler Paramyotonie. Zentralbl. Neurol. 5: 265–272.Google Scholar
  16. 16.
    Jackson, C. E., Barohn, R. J., and Ptáček, L. J. (1994). Paramyotonia congenita: Abnormal short-exercise test following cooling in the absence of weakness and improvement after mexiletine therapy. Muscle Nerve 17:763–768.PubMedCrossRefGoogle Scholar
  17. 17.
    Layzer, R. B., Lovelace, R. E., and Rowland, L. P. (1967). Hyperkalemic periodic paralysis. Arch. Neurol. 16:455.PubMedGoogle Scholar
  18. 18.
    Trudell, R. G., Kaiser, K. K., and Griggs, R. C. (1987). Acetazolamide responsive myotonia congenita. Neurology 37:488–491.PubMedGoogle Scholar
  19. 19.
    Lehmann-Horn, F., Kuther, G., Ricker, K., Grafe, P., Ballanyi, K., and Rüdel, R. (1987). Adynamia episodica hereditaria with myotonia: A non-inactivating sodium current and the effect of extracellular pH. Muscle Nerve 10:363–374.PubMedCrossRefGoogle Scholar
  20. 20.
    Rudel, R., Ruppersberg, J. P., and Spittelmeister, W. (1989). Abnormalities of the fast sodium current in myotonic dystrophy, recessive generalized myotonia, and adynamia episodica. Muscle Nerve 12:281–287.PubMedCrossRefGoogle Scholar
  21. 21.
    Fontaine, B., Khurana, T. S., Hoffman, E. P., Bruns, G. A. P., Haines, J. L., Trofatter, J. A., Janson, M. P., Rich, J., McFarlane, H., McKenna Yasek, D., Romano, D., Gusella, J. F., and Brown, R. H., Jr. (1990). Hyperkalemic periodic paralysis and the adult muscle sodium channel gene. Science 250:1000–1002.PubMedCrossRefGoogle Scholar
  22. 22.
    Ptáček, L. J., Tyler, F., Trimmer, J. S., Agnew, W. S., and Leppert, M. (1991). Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus. Am. J. Hum. Genet. 49:378–382.PubMedGoogle Scholar
  23. 23.
    Ebers, G. C, George, A. L., Barchi, R. L., Ting-Passador, S. S., Kallen, R. G., Lathrop, G. M., Beckman, J. S., Hahn, A. F, Brown, W. F., Campbell, R. D., and Hudson, A. J. (1991). Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann. Neurol. 30:810–816.PubMedCrossRefGoogle Scholar
  24. 24.
    Lehmann-Horn, F., Rüdel, R., and Ricker, K. (1987). Membrane defects in paramyotonia congenita (Eulenburg). Muscle Nerve 10:633–641.PubMedCrossRefGoogle Scholar
  25. 25.
    Ptáček, L. J., Trimmer, J. S., Agnew, W. S., Roberts, J. W., Petajan, J. H., and Leppert, M. (1991). Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium channel gene locus. Am. J. Hum. Genet. 49 :851–854.PubMedGoogle Scholar
  26. 26.
    Ptáček, L. J., Tawil, R., Griggs, R. C, Storvick, D., and Leppert, M. F. (1992). Linkage of atypical myotonia congenita to a sodium channel locus. Neurology 42:431-433.PubMedGoogle Scholar
  27. 27.
    Salkoff, L., Butler, A., Wu, A., Scavarda, N., Giffen, K., Ifune, C, Goodman, R., and Mandel, G. (1987). Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237:744–749.Google Scholar
  28. 28.
    Loughney, K., Kreber, R., and Ganetzky, B. (1989). Molecular analysis of the para locus, a sodium channel gene in drosophila. Cell 58: 1143–1154.PubMedCrossRefGoogle Scholar
  29. 29.
    Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayanao, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Miniamino, N., Kan-gawa, K., Natsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequences. Nature 312:121–127.PubMedCrossRefGoogle Scholar
  30. 30.
    Noda, M., Ikeda, T., Kayanao, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., and Numa, S. (1984). Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320: 188–192.CrossRefGoogle Scholar
  31. 31.
    Trimmer, J. S., Cooperman, S. S., Tomiko, S. A., Zhou, J., Crean, S. M., Boyle, M. B., Kallen, R. G., Sheng, Z., Barchi, R. L., Sig-worth, F. J., Goodman, R. H., Agnew, W. S., and Mandel, G. (1989). Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Rogart, R. B., Cribbs, L. L., Muglia, L. K., Kephart, D. D., and Kaiser, M. W. (1989). Molecular cloning of a putative tetrodotoxin-resistant rat heart sodium channel isoform. Proc. Natl. Acad. Sci. USA 86:8170–8174.PubMedCrossRefGoogle Scholar
  33. 33.
    Kallen, R. G., Sheng, Z. H., Yang, J., Chen, L., Rogart, R. B., and Barchi, R. L. (1990). Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242.PubMedCrossRefGoogle Scholar
  34. 34.
    George, A. L., Komisarof, J., Kallen, R. G., and Barchi, R. L. (1990). Primary structure of the adult human skeletal muscle voltage-dependent Na+ channel. Ann. Neurol. 31:131–137.CrossRefGoogle Scholar
  35. 35.
    Wang, J. Z., Rojas, C. V, Zhou, J., Schwartz, L. S., Nicholas, H., and Hoffman, E. P. (1992). Sequence and genomic structure of the human adult skeletal muscle sodium channel α-subunit gene on 17q. Biochem. Biophys. Res. Commun. 182:794–801.PubMedCrossRefGoogle Scholar
  36. 36.
    McClatchey, A. I., Liu, C. S., Wang, J., Hoffman, E. P., Rojas, C, and Gusella, J. (1992). Genomic structure of the human skeletal muscle sodium channel gene. Hum. Mol. Genet. 1:521–527.PubMedCrossRefGoogle Scholar
  37. 37.
    Numa, S., and Noda, M. (1986). Molecular structure of sodium channels. Ann. N. Y. Acad. Sci. 479:338–355.PubMedCrossRefGoogle Scholar
  38. 38.
    Barchi, R. L. (1988). Probing the molecular structure of the voltage-dependent sodium channel. Annu. Rev. Neurosci. 11:455–495.PubMedCrossRefGoogle Scholar
  39. 39.
    Trimmer, J. S., and Agnew W. S. (1989). Molecular diversity of voltage-sensitive Na channels. Annu. Rev. Physiol. 51:401-418.PubMedCrossRefGoogle Scholar
  40. 40.
    Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603.PubMedCrossRefGoogle Scholar
  41. 41.
    Moorman, J. R., Kirsch, G. E., Brown, A. M., Joho R. H. (1990). Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science 250:688–691.PubMedCrossRefGoogle Scholar
  42. 42.
    Isom, L. L., De Jongh, K. S., and Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194.PubMedCrossRefGoogle Scholar
  43. 43.
    Isom, L. L., De Jongh, K. S., Patton, D. E., Reber, B. F. X., Offord, J., Charbonneau, H., Walsh, K., Goldin, A. L., and Catterall, W. A. (1992). Primary structure and functional expression of the ß1 subunit of the rat brain sodium channel. Science 256:839–842.PubMedCrossRefGoogle Scholar
  44. 44.
    Feero, W. G., Wang, J., Barany, F., Zhou, J., Todorovic, S. M., Con-wit, R., Galloway, G., Hausmanowa-Petrusewocz, I., Fidzianska, A., Arahata, K., Wessel, H. B., Wadelius, C, Marks, H. G., Hartlage, P., Hayakawa, H., and Hoffman, E. P. (1993). Hyperkalemic periodic paralysis: Rapid molecular diagnosis and relationship of genotype to phenotype in 12 families. Neurology 43:668–673.PubMedGoogle Scholar
  45. 45.
    Ptáček, L. J., Gouw, L., Kwiecinski, H., McManis, P. G., Mendell, J., George, A. L., Barchi, R. L., Robertson, M., and Leppert, M. F. (1993). Sodium channel mutations in hyperkalemic periodic paralysis and paramyotonia congenita. Ann. Neurol. 33:300–307.PubMedGoogle Scholar
  46. 46.
    Rudolph, J. A., Spier, S. J., Byrns, G., Rojas, C. V., Bernoco, D., and Hoffman, E. P. (1992). Periodic paralysis in quarter horses: A sodium channel mutation disseminated by selective breeding. Nature Genet. 2:144–147.PubMedCrossRefGoogle Scholar
  47. 47.
    McClatchey, A. I., McKenna-Yasek, D., Cros, D., Worthen, H. G., Kuncl, R. W., DeSilva, S. M., Cornblath, D. R., Gusella, J. F., and Brown, R. H., Jr. (1992). Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nature Genet. 2:148–152.PubMedCrossRefGoogle Scholar
  48. 48.
    Papazian, D. M., Timpe, L. C, Jan, Y. N., and Jan, L. Y. (1991). Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310.PubMedCrossRefGoogle Scholar
  49. 49.
    Cannon, S. C., Brown, R. H., and Corey, D. P. (1991). A sodium channel defect in hyperkalemic periodic paralysis: Potassium-induced failure of inactivation. Neuron 6:619–626.PubMedCrossRefGoogle Scholar
  50. 50.
    Van den Bergh, P., Van de Wyngaert, F., and Brucher, J.-M. (1991). Potassium sensitivity in pure paramyotonia congenita. Neurology 41(Suppl. l):419–420.Google Scholar
  51. 51.
    DeSilva, S. M., Kuncl, R. W., Griffin, J. W., Cornblath, D. R., and Chavoustie, S. (1990). Paramyotonia congenita or hyperkalemic periodic paralysis? Clinical and electrophysiological features of each entity in one family. Muscle Nerve 13:21–26.CrossRefGoogle Scholar
  52. 52.
    Lerche, H., Heine, R., Pika, U., George, A. L., Mitrovic, N., Browatzki, M., Weiss, T., River-Bastide, M., Franke, C, Lomonaco, M., Ricker, K., and Lehmann-Horn, F. (1993). Human sodium channel myotonia: Slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J. Physiol. (London) 470:13–22.Google Scholar
  53. 53.
    Tahmoush, A. J., Zhang, P., Hyslop, T. M, Heiman-Patterson, T. D., Schaller, K. L., and Caldwell, J. H. (1993). Thr;raMet substitution and inactivation defect in muscle Na channel in a family with paramyotonia congenita (PC). Neurology 43:1441.Google Scholar
  54. 54.
    West, J. W., Patton, D. E., Scheuer, T., Wang, Y, Goldin, A. L., and Catterall W. A. (1992). A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. Natl. Acad. Sci. USA 89:10910–10914.PubMedCrossRefGoogle Scholar
  55. 55.
    Cannon, S. C, and Strittmatter, S. M. (1993). Functional consequences of sodium channel mutations identified in families with periodic paralysis. Neuron 10:317–326.PubMedCrossRefGoogle Scholar
  56. 56.
    Cummins, T. R., Zhou, J., Sigworth, F. J., Ukomadu, C, Stephan, M., Ptáček, L. J., and Agnew, W. S. (1993). Functional consequences of a sodium channel mutation causing hyperkalemic periodic paralysis. Neuron 10:667–678.PubMedCrossRefGoogle Scholar
  57. 57.
    Yang, N., Ji, S., Zhou, M., Ptáček, L. J., Barchi, R. L., Horn, R., and George, A. L. (1994). Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc. Natl. Acad. Sci. USA 91:12785–12789.CrossRefGoogle Scholar
  58. 58.
    Chahine, M., George, A. L., Zhou, M., Ji, S., Sun, W., Barchi, R. L., and Horn, R. (1994). Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12:281–294.PubMedCrossRefGoogle Scholar
  59. 59.
    Mitrovic, N., George, A. L., Heine, R., Wagner, S., Pika, U., Hart-laub, U., Zhou, M., Lerche, H., Fahlke, C., and Lehmann-Horn, F. (1994). Potassium-aggravated myotonia: The V1589M mutation destabilizes the inactivated state of the human muscle sodium channel. J. Physiol. (London) 478:395–402.Google Scholar
  60. 60.
    Westphal, C. (1885). Über einen merkwurdigen fall von periodischer lahmung aller vier extemitaten mit gleichzeitigem erloschen der elektrischen erregbarkeit wahrend der lahmung. Klin. Wochenschr. 22: 489–491.Google Scholar
  61. 61.
    Biemond, A., and Daniels, A. P. (1934). Familial periodic paralysis and its transition into spinal muscular atrophy. Brain 57:90–108.CrossRefGoogle Scholar
  62. 62.
    Torres, C. F., Griggs, R. C, Moxley, R. T., and Bender, A. N. (1981). Hypokalemic periodic paralysis exacerbated by acetazolamide. Neurology 31:1423–1428.PubMedGoogle Scholar
  63. 63.
    Fontaine, B., Trofatter, J., Rouleau, G. A., Khurana, T. S., Haines, J., Brown, R., and Gusella, J. (1991). Different gene loci for hyperkalemic and hypokalemic periodic paralysis. Neuromuscular Disorders 1:235–238.PubMedCrossRefGoogle Scholar
  64. 64.
    Casley, W., Allon, M., Cousin, H. K., Ting, S. S., Crackower, M. A., Hashimoto, L., Cornelis, F., Beckmann, J. S., Hudson, A. J., and Ebers, G. C. (1992). Exclusion of linkage between hypokalemic periodic paralysis (HOKPP) and three candidate loci. Genomics 14: 493–494.PubMedCrossRefGoogle Scholar
  65. 65.
    Fontaine, B., Vale-Santos, J., Jurkat-Rott, K., Reboul, J., Plassart, E., Rime, C.S., Elbaz, A., Heine, R., Guimaraes, J., Weissenbach, J., Baumann, N., Fardeau, M., and Lehmann-Horn, F. (1994). Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome lq31–32 in three European families. Nature Genet. 6:267–272.PubMedCrossRefGoogle Scholar
  66. 66.
    Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T., and Numa, S. (1990). Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569.PubMedCrossRefGoogle Scholar
  67. 67.
    Tanabe, T, Beam, K. G., Powell, J. A., and Numa, S. (1988). Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139.PubMedCrossRefGoogle Scholar
  68. 68.
    Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Home, W., Wei, X., Rampe, D., Campbell, K., Brown, A. M., and Birnbaumer, L. (1989). Induction of calcium currents by the expression of the α1 subunit from the dihydropyridine receptor of skeletal muscle. Nature 340: 233–236.PubMedCrossRefGoogle Scholar
  69. 69.
    Gluecksohn-Waelsch, S. (1963). Lethal genes and analysis of differentiation. Science 142:1269–1276.PubMedCrossRefGoogle Scholar
  70. 70.
    Powell, J. A., and Fambrough, D. M. (1973). Electrical properties of normal and dysgenic mouse skeletal muscle in culture. J. Cell. Physiol. 82:21–38.PubMedCrossRefGoogle Scholar
  71. 71.
    Knudson, C. M., Chaudhari, N., Sharp, A. H., Powell, J. A., Beam, K. G., and Campbell, K. P. (1989). Specific absence of α1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J. Biol. Chem. 264:1345–1348.PubMedGoogle Scholar
  72. 72.
    Beam, K. G., Knudson, C. M., and Powell, J. A. (1986). A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320 :168–170.PubMedCrossRefGoogle Scholar
  73. 73.
    Chaudhari, N. (1992). A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J. Biol. Chem. 267:25636–25639.PubMedGoogle Scholar
  74. 74.
    Rüdel, R., Lehmann-Horn, F., Ricker, K., and Küther, G. (1984). Hypokalemic periodic paralysis: In vitro investigation of muscle fiber membrane parameters. Muscle Nerve 7:110–120.PubMedCrossRefGoogle Scholar
  75. 75.
    Lipicky, R. J., and Bryant, S. H. (1973). A biophysical study of the human myotonias. In New Developments in Electromyography and Clinical Neurophysiology (J. E. Desmedt, ed.), Karger, Basel, pp. 451-463.Google Scholar
  76. 76.
    Abdalla, J. A., Casley, W. L., Cousin, L., Hudson, A. J., Murphy, E. G., Cornélis, F. C, Hashimoto, L., and Ebers, G. C. (1992). Linkage of Thomsen disease to the T-cell-receptor Beta (TCRB) locus on chromosome 7q35. Am. J. Hum. Genet. 51:579–584.PubMedGoogle Scholar
  77. 77.
    Mehrke, G., Brinkmeier, H., and Jockusch, H. (1988). The myotonic mouse mutant ADR: Electrophysiology of the muscle fiber. Muscle Nerve 11:440–446.PubMedCrossRefGoogle Scholar
  78. 78.
    Steinmeyer, K., Klocke, R., Ortland, C, Gronemeirer, M., Jockusch, H., Gründer, S., and Jentsch, T. J. (1991). Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308.PubMedCrossRefGoogle Scholar
  79. 79.
    Koch, M. C, Steinmeyer, K., Lorenz, C, Ricker, K., Wolf, F., Otto, M., Zoll, B., Lehmann-Horn, F., Grzeschik, K.-H., and Jentsch, T. J. (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257:797–800.PubMedCrossRefGoogle Scholar
  80. 80.
    Jentsch, T. J., Steinmeyer, K., and Schwartz, G. (1990). Primary structure of Torpedo marmorata chloride channel isolated by expression cloning of Xenopus oocytes. Nature 348:510–514.PubMedCrossRefGoogle Scholar
  81. 81.
    Thiemann, A., Grunder, S., Pusch, M., and Jentsch, T. J. (1992). A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:357–360.CrossRefGoogle Scholar
  82. 82.
    Hanke, W., and Miller, C. (1983). Single chloride channels from Torpedo electroplax. J. Gen. Physiol 82:25–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Bauer, C. K., Steinmeyer, K., Schwarz, J. R., and Jentsch, T. J. (1991). Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc. Natl. Acad. Sci. USA 88:11052–11056.PubMedCrossRefGoogle Scholar
  84. 84.
    Heine, R., George, A. L., Pika, U., Deymeer, R., Rüdel, R., and Lehmann-Horn, F. (1994). Proof of nonfunctional muscle chloride channel in recessive myotonia congenita (Becker) by detection of a 4 base pair deletion. Hum. Mol. Genet. 3:1123–1128.PubMedCrossRefGoogle Scholar
  85. 85.
    George, A. L., Crackower, M. A., Abdalla, J. A., Hudson, A. J., and Ebers, G. C. (1993). Molecular basis of Thomsens disease (autosomal dominant myotonia congenita). Nature Genet. 3:305–310.PubMedCrossRefGoogle Scholar
  86. 86.
    Steinmeyer, K., Lorenz, C, Pusch, M., Koch, M., and Jentsch, T. J. (1994). Multimeric structure of CIC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 13:737–743.PubMedGoogle Scholar
  87. 87.
    Andersen, E. D., Krasilnikoff, P. A., and Overvad, H. (1971). Inter-mittent muscular weakness, extrasystoles, and multiple developmental anomalies. Acta Paediatr. Scand. 60:559–564.PubMedCrossRefGoogle Scholar
  88. 88.
    Tawil, R., Ptáček, L. J., Pavlakis, S. G., DeVivo, D. C., Penn, A. S., and Griggs, R. C. (1994). Andersens syndrome: Potassium-sensitive periodic paralysis, ventricular ectopy and dysmorphic features. Ann. Neurol. 35:326–330.PubMedCrossRefGoogle Scholar
  89. 89.
    Gancher, S. T., and Nutt, J. G. (1986). Autosomal dominant episodic ataxia: A heterogeneous syndrome. Movement Disorders 1:239–253.PubMedCrossRefGoogle Scholar
  90. 90.
    Browne, D. L., Gancher, S. T., Nutt, J. G., Brunt, E. R. P., Smith, E. A., Kramer, P., and Litt, M. (1994). Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nature Genet. 8:136–140.PubMedCrossRefGoogle Scholar
  91. 91.
    Griggs, R. C., and Nutt, J. G. (1995). Episodic ataxias as chan-nelopathies. Ann. Neurol. 37:285–286.PubMedCrossRefGoogle Scholar
  92. 92.
    Griggs, R. C., Bender, A. N., and Tawil, R. (1996). A puzzling case of periodic paralysis. Muscle Nerve, 19:362–364.PubMedCrossRefGoogle Scholar
  93. 93.
    Riggs, J. E., Griggs, R. C, and Moxley, R. T., III. (1984). Dissociation of glucose and potassium arterial-venous differences across the forearm by acetazolamide. Arch. Neurol. 41:35–38.PubMedGoogle Scholar
  94. 94.
    Riggs, J. E., Griggs, R. C., and Moxley, R. T. (1977). Acetazolamide induced weakness in paramyotonia congenita. Ann. Intern. Med. 86:169–173.PubMedGoogle Scholar
  95. 95.
    Riggs, J. E., Griggs, R. C., Moxley, and Lewis, E. D. (1981). Acute effects of acetazolamide in hyperkalemic periodic paralysis. Neurology 31:725–729.PubMedGoogle Scholar
  96. 96.
    Streib, E. W. (1986). Successful treatment with tocainide of recessive generalized congenital myotonia. Ann. Neurol. 19:501.PubMedCrossRefGoogle Scholar
  97. 97.
    Schwartz, O., and Jampel, R. S. (1962). Congenital blepharophimosis associated with a unique generalized myopathy. Arch. Ophthalmol. 68:52–57.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Louis Ptáček
    • 1
  • Robert C. Griggs
    • 2
  1. 1.Department of Neurology, Human Molecular Biology and GeneticsThe University of UtahSalt Lake CityUSA
  2. 2.Department of NeurologyUniversity of RochesterRochesterUSA

Personalised recommendations