Skip to main content

Abstract

This chapter deals with disorders of the neuromuscular junction including myasthenia gravis (MG), Lambert-Eaton myasthenic syndrome (LEMS), and congenital disorders of neuromuscular transmission (CDNT). The pathophysiologies of these disorders lie at the presynaptic nerve terminal and the specialized structures located on the postsynaptic skeletal muscle membrane. The myasthenic syndromes are of general interest because an understanding of the pathophysiology at the neuromuscular junction may provide insight into disorders at other neural synapses as, for example, may occur in certain epileptic disorders. In addition, understanding the consequence of specific mutations in the nicotinic acetylcholine receptor (AChR), as occurs in some of the CDNT, may provide insights into the structure-function relationships of the AChR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, J. A., Kocsis, J. D., and Waxman, S. G. (1990). Ion channel organization of the myelinated fiber. Trends Neurosci. 13:48–54.

    Article  PubMed  CAS  Google Scholar 

  2. Salpeter, M. M. (1987). The Vertebrate Neuromuscular Junction Liss, New York.

    Google Scholar 

  3. Katz, B. (1966). Nerve Muscle and Synapse, McGraw-Hill, New York.

    Google Scholar 

  4. Katz, B., and Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 244:665–699.

    Google Scholar 

  5. Katz, B., and Miledi, R. (1973). The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (London) 231:549–574.

    PubMed  CAS  Google Scholar 

  6. Katz, B., and Miledi, R. (1979). Estimates of quantal content during chemical potentiation of transmitter release. Proc. R. Soc. London 205:369–378.

    Article  CAS  Google Scholar 

  7. Hall, Z. W., Lubit, B. W., and Schwartz, J. H. (1981). Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90:789–792.

    Article  PubMed  CAS  Google Scholar 

  8. Hall, Z. W. (1992). The nerve terminal. In An Introduction to Molecular Neurobiology (Z. W. Hall, ed.), Sinauer Associates, Sunderland, MA, pp. 148–180.

    Google Scholar 

  9. Heuser, J. E., and Reese, T. S. (1973). Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57:315–344.

    Article  PubMed  CAS  Google Scholar 

  10. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y, Yan, L., and Evans, L. (1979). Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81:275–300.

    Article  PubMed  CAS  Google Scholar 

  11. Peper, K., Dreyer, R, Sandri, C., and Akert, K. (1974). Structure and ultrastructure of the frog motor endplate. A freeze-etching study. Cell Tissue Res 149:437–455.

    Article  PubMed  CAS  Google Scholar 

  12. Augustine, G. J., Adler, E. M., and Charlton, M. P. (1991). The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann. N.Y. Acad. Sci. 635:365–381.

    Article  PubMed  CAS  Google Scholar 

  13. Smith, S. J., and Augustine, G. J. (1988). Calcium ions, active zones and synaptic transmitter release. Trends Neurosci. 10:458–464.

    Article  Google Scholar 

  14. Llinas, R. R. (1991). Depolarization release coupling: An overview. Ann. N.Y. Acad. Sci. 635:3–17.

    Article  PubMed  CAS  Google Scholar 

  15. Engel, A. G. (1991). Review of evidence for loss of motor nerve terminal calcium channels in Lambert-Eaton myasthenic syndrome. Ann. N.Y. Acad. Sci. 635:246–258.

    Article  PubMed  CAS  Google Scholar 

  16. Pumplin, D. W., Reese, T. S., and Llinas, R. (1981). Are the presynaptic membrane particles calcium channels? Proc. Natl. Acad. Sci. USA 78:7210–7213.

    Article  PubMed  CAS  Google Scholar 

  17. Cherksey, B. D., Sugimori, M., and Llinas, R. R. (1991). Properties of calcium channels isolated with spider toxin, FTX. Ann. N.Y. Acad. Sci. 635:80–89.

    Article  PubMed  CAS  Google Scholar 

  18. Lindgren, C. A., and Moore, J. W. (1991). Calcium current in motor nerve endings of the lizard. Ann. N.Y. Acad. Sci. 635:58–69.

    Article  PubMed  CAS  Google Scholar 

  19. Nowycky, M. C., Fox, A. P., and Tsien, R. W. (1985). Three types of neuronal calcium channel with calcium agonist sensitivity. Nature 316:440–443.

    Article  PubMed  CAS  Google Scholar 

  20. Nowycky, M. C. (1991). Two high-threshold Ca2+ channels contribute Ca2+ for depolarization-secretion coupling in the mammalian neurohypophysis. Ann. N.Y. Acad. Sci. 635:45–57.

    Article  PubMed  CAS  Google Scholar 

  21. Stanley, E. F., and Cox, C. (1991). Calcium channels in the presynaptic nerve terminal of the chick ciliary ganglion giant synapse. Ann. N.Y. Acad. Sci. 635:70–79.

    Article  PubMed  CAS  Google Scholar 

  22. Stanley, E. F. (1993). Presynaptic calcium channels and the transmitter release mechanism. Ann. N.Y. Acad. Sci. 681:368–372.

    Article  PubMed  CAS  Google Scholar 

  23. Protti, D. A., Sanchez, V. A., Cherksey, B. D., Sugimori, M., Llinas, R. R., and Uchitel, O. D. (1993). Mammalian neuromuscular transmission blocked by funnel web toxin. Ann. N.Y. Acad. Sci. 681:405–407.

    Article  PubMed  CAS  Google Scholar 

  24. Catterall, W. A., De Jongh, K., Rotman, E., Hell, J., Westenbroek, R., Dubel, S. J., and Snutch, T. P. (1993). Molecular properties of calcium channels in skeletal muscle and neurons. Ann. N.Y. Acad. Sci. 681:342–355.

    Article  PubMed  CAS  Google Scholar 

  25. Wray, D., and Porter, V. (1993). Calcium channel types at the neuromuscular junction. Ann. N.Y. Acad. Sci. 681:356–367.

    Article  PubMed  CAS  Google Scholar 

  26. Niles, W. D., and Cohen, F. S. (1991). Video-microscopy studies of vesicle-planar membrane adhesion and fusion. Ann. N.Y. Acad. Sci. 635:273–306.

    Article  PubMed  CAS  Google Scholar 

  27. Ehrenstein, G., Stanley, E. F., Pocotte, S. L., Jia, M., Iwasa, K. H., and Krebs, K. E. (1991). Evidence of a model of exocytosis that involves calcium-activated channels. Ann. N.Y Acad. Sci. 635:297–306.

    Article  PubMed  CAS  Google Scholar 

  28. Perin, M. S., Fried, V. A., Mignery, G., Jahn, R., and Südhof, T. C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345: 260–263.

    Article  PubMed  CAS  Google Scholar 

  29. Perin, M. S., Brose, N., Jahn, R., and Südhof, T. C. (1991). Domain structure of synaptotagmin (p65). J. Biol. Chem. 266:623–629.

    PubMed  CAS  Google Scholar 

  30. Pollard, H. B., Rojas, E., Pastor, R. W., Rojas, E., Guy, H. R., and Burns, A. L. (1991). Synexin: Molecular mechanism of calcium-dependent membrane fusion and voltage-dependent calcium-channel activity. Evidence in support of the “hydrophobic bridge hypothesis” for exocytotic membrane fusion. Ann. N.Y. Acad. Sci. 635:328–351.

    Article  PubMed  CAS  Google Scholar 

  31. Zimmerberg, J., Curran, M., and Cohen, F. S. (1991). A lipid/protein complex hypothesis for exocytotic fusion pore formation. Ann. N.Y. Acad. Sci. 681:307–317.

    Article  Google Scholar 

  32. Almers, W., Breckenridge, L. J., Iwata, A., Lee, A. K., Spruce, A. E., and Tse, F. W. (1991). Millisecond studies of single membrane fusion events. Ann. N.Y. Acad. Sci. 635:318–327.

    Article  PubMed  CAS  Google Scholar 

  33. Chandler, D. E. (1991). Membrane fusion as seen in rapidly frozen secretory cells. Ann. N.Y. Acad. Sci. 635:234–245.

    Article  PubMed  CAS  Google Scholar 

  34. Miledi, R., Molenaar, P. C., and Polak, R. L. (1983). Electrophysiological and chemical determination of acetylcholine release at the frog neuromuscular junction. J. Physiol. (London) 334:245–254.

    PubMed  CAS  Google Scholar 

  35. Etcheberrigaray, R., Fielder, J. L., Pollard, H. B., and Rojas, E. (1991). Endoplasmic reticulum as a source of Ca2+ in neurotransmitter secretion. Ann. N.Y. Acad. Sci. 635:90–99.

    Article  PubMed  CAS  Google Scholar 

  36. Land, B. R., Harris, W. V., Salpeter, E. E., and Salpeter, M. M. (1984). Diffusion and binding constants for acetylcholine derived from the falling phase of miniature endplate currents. Proc. Natl. Acad. Sci. USA 81:1594–1598.

    Article  PubMed  CAS  Google Scholar 

  37. McMahan, U. J., Sanes, J. R., and Marshall, L. M. (1978). Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271:172–174.

    Article  PubMed  CAS  Google Scholar 

  38. Land, B. R., Salpeter, E. E., and Salpeter, M. M. (1981). Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl. Acad. Sci. USA 78:7200–7204.

    Article  PubMed  CAS  Google Scholar 

  39. Flucher, B. E., and Daniels, M. P. (1989). Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kD protein. Neuron 3: 163–175.

    Article  PubMed  CAS  Google Scholar 

  40. Kuffler, S. W., and Yoshikami, D. (1975). The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: Iontophoretic mapping in the micron range. J. Physiol. (London) 244:703–730.

    PubMed  CAS  Google Scholar 

  41. Merlie, J. P., and Sanes, J. R. (1985). Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers. Nature 317:66–68.

    Article  PubMed  CAS  Google Scholar 

  42. Sanes, J. R., Johnson, Y. R., Kotzbauer, P. T., Mudd, J., Hanley, T., Martinou, J.-C., and Merlie, J. P. (1991). Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers. Development 113:1181–1191.

    PubMed  CAS  Google Scholar 

  43. Salpeter, M. M., and Loring, R. H. (1985). Nicotinic acetylcholine receptors in vertebrate muscle: Properties, distribution and neural control. Prog. Neurobiol. 25:297–325.

    Article  PubMed  CAS  Google Scholar 

  44. Kao, I., and Drachman, D. (1977). Myasthenic immunoglobulin accelerates acetylcholine receptor degradation. Science 196:526.

    Article  Google Scholar 

  45. Merlie, J. P., Heinemann, S., and Lindstrom, J. M. (1979). Acetylcholine receptor degradation in adult rat diaphragms in organ culture and the effect of anti-acetylcholine receptor antibodies. J. Biol. Chem. 254:6320–6327.

    PubMed  CAS  Google Scholar 

  46. Martinou, J. C., Falls, D. I., Fischback, G. D., and Merlie, J. P. (1991). Acetylcholine receptor-inducing activity stimulates expression of the epsilon-subunit gene of the muscle acetylcholine receptor. Proc. Natl. Acad. Sci. USA 88:7669–7673.

    Article  PubMed  CAS  Google Scholar 

  47. Rutishauser, U., Grumet, M., and Edelman, G. M. (1983). Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture. J. Cell Biol. 97:145–152.

    Article  PubMed  CAS  Google Scholar 

  48. Colquhoun, D., and Sakmann, B. (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (London) 369:501–557.

    PubMed  CAS  Google Scholar 

  49. Haimovich, B., Schotland, D. L., Fieles, W. E., and Barchi, R. L. (1987). Localization of sodium channel subtypes in rat skeletal muscle using channel-specific monoclonal antibodies. J. Neurosci. 7:2957–2966.

    PubMed  CAS  Google Scholar 

  50. Roberts, W. M. (1987). Sodium channels near end-plates and nuclei of snake skeletal muscle. J. Physiol. (London) 388:213–232.

    PubMed  CAS  Google Scholar 

  51. Ruff, R. L. (1992). Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers. Am. J. Physiol. 262:C229-C234.

    PubMed  CAS  Google Scholar 

  52. Ruff, R. L., and Whittlesey, D. (1992). Na+ current densities and voltage dependence in human intercostal muscle fibres. J. Physiol. (London) 458:85–97.

    PubMed  CAS  Google Scholar 

  53. Ruff, R. L., and Whittlesey, D. (1993). Na+ currents near and away from endplates on human fast and slow twitch muscle fibers. Muscle Nerve 16:922–929.

    Article  PubMed  CAS  Google Scholar 

  54. Ruff, R. L., and Whittlesey, D. (1993). Comparison of Na+ currents from type Ha and lib human intercostal muscle fibers. Am. J. Physiol. 265:C171-C177.

    PubMed  CAS  Google Scholar 

  55. Angelides, K. J. (1986). Fluorescently labelled Na+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 321:63–66.

    Article  PubMed  CAS  Google Scholar 

  56. Aimers, W., Stanfield, P. R., and Stühmer, W. (1983). Lateral distribution of sodium and potassium channels in frog skeletal muscle: Measurements with a patch-clamp technique, J. Physiol. (London) 321:63–66.

    Google Scholar 

  57. Caldwell, J. H., Campbell, D. T., and Beam, K. G. (1986). Sodium channel distribution in vertebrate skeletal muscle. J. Gen. Physiol. 87:907–932.

    Article  PubMed  CAS  Google Scholar 

  58. Milton, R. L., Lupa, M. T., and Caldwell, J. H. (1992). Fast and slow twitch skeletal muscle fibres differ in their distributions of Na channels near the endplate. Neurosci. Lett. 135:41–44.

    Article  PubMed  CAS  Google Scholar 

  59. Banker, B. Q., Kelly, S. S., and Robbins, N. (1983). Neuromuscular transmission and correlative morphology in young and old mice. J. Physiol. (London) 339:355–375.

    PubMed  CAS  Google Scholar 

  60. Fertuck, H. C., and Salpeter, M. M. (1976). Quantitation of junctional and extrajunctional receptors by electron microscope autoradiography after 125-I-labeled alpha-bungarotoxin binding at mouse motor endplates. J. Cell Biol. 69:144–158.

    Article  PubMed  CAS  Google Scholar 

  61. Porter, C W., and Barnard, E. A. (1975). The density of cholinergic receptors at the endplate postsynaptic membrane: Ultrastructural studies in two mammalian species. J. Membr. Biol 20:31–49.

    Article  CAS  Google Scholar 

  62. Gertler, R. A., and Robbins, N. (1978). Differences in neuromuscular transmission in red and white muscles. Brain Res. 142:255–284.

    Article  Google Scholar 

  63. Padykula, H. A., and Gauthier, G. F. (1970). The ultrastructure of the neuromuscular junctions of mammalian red, white and intermediate skeletal muscle fibers. J. Cell Biol. 46:27–41.

    Article  PubMed  CAS  Google Scholar 

  64. Tonge, D. A. (1974). Chronic effects of botulinum toxin on neuromuscular transmission and sensitivity to acetylcholine in slow and fast skeletal muscle of the mouse. J. Physiol. (London) 241:127–139.

    PubMed  CAS  Google Scholar 

  65. Sterz, R., Pagala, M., and Peper, K. (1983). Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pfluegers Arch. 398:48–54.

    Article  CAS  Google Scholar 

  66. Storella, R. J., Riker, W. F., and Baker, T. (1985). d-Tubocurarine sensitivities of fast and slow neuromuscular system of the rat. Eur. J.Pharmacol. 118:181–184.

    Article  PubMed  CAS  Google Scholar 

  67. Caldwell, J. H., and Milton, R. L. (1988). Sodium channel distribution in normal and denervated rodent and snake skeletal muscle. J. Physiol. (London) 401:145–161.

    PubMed  CAS  Google Scholar 

  68. Laszewski, B., and Ruff, R. L. (1985). The effects of glucocorticoid treatment on excitation-contraction coupling. Am. J. Physiol. 248:E363-E369.

    PubMed  CAS  Google Scholar 

  69. Hennig, R., and Lomo, T. (1985). Firing patterns of motor units in normal rats. Nature 314:164–166.

    Article  PubMed  CAS  Google Scholar 

  70. Kelly, S. S., and Robbins, N. (1986). Sustained transmitter output by increased transmitter turnover in limb muscles of old mice. J. Neurosci. 6:2900–2907.

    PubMed  CAS  Google Scholar 

  71. Lev-Tov, A. (1987). Junctional transmission in fast- and slow-twitch mammalian muscle units. J. Neurophysiol. 57:660–671.

    PubMed  CAS  Google Scholar 

  72. Lev-Tov, A., and Fishman, R. (1986). The modulation of transmitter release in motor nerve endings varies with the type of muscle fiber innervated. Brain Res. 363:379–382.

    Article  PubMed  CAS  Google Scholar 

  73. Ruff, R. L., Simoncini, L., and Stiihmer, W. (1988). Slow sodium channel inactivation in mammalian muscle: A possible role in regulating excitability. Muscle Nerve 11:502–510.

    Article  PubMed  CAS  Google Scholar 

  74. Ruff, R. L., Simoncini, L., and Stühmer, W. (1987). Comparison between slow sodium channel inactivation in rat slow and fast twitch muscle. J. Physiol (London) 383:339–348.

    PubMed  CAS  Google Scholar 

  75. Ruff, R. L., Simoncini, L., and Stühmer, W. (1988). The possible role of slow sodium channel inactivation in regulating membrane excitability in mammalian skeletal muscle. In Contributions to Contemporary Neurology: A Tribute to Joseph M. Foley (J. Conomy and R. B. Daroff, eds.), Butterworth, Boston, pp. 153–170.

    Google Scholar 

  76. Guy, H. R., and Hucho, F. (1987). The ion channel of nicotinic acetylcholine receptor. Trends Neurosci. 10:318–322.

    Article  CAS  Google Scholar 

  77. Ruff, R. L. (1986). Ionic channels II. Voltage- and agonist-gated and agonist-modified channel properties and structure. Muscle Nerve 9:767–786.

    Article  PubMed  CAS  Google Scholar 

  78. Witzemann, V., Barg, B., Criado, M., Stein, E., and Sakmann, B. (1989). Developmental regulation of five subunits specific mR-NAs encoding acetylcholine receptor subtypes in rat muscle. FEBS Lett. 242:419–424.

    Article  PubMed  CAS  Google Scholar 

  79. Dani, J. A. (1989). Site-directed mutagenesis and single-channel currents define the ionic channel of the nicotinic acetylcholine receptor. Trends Neurosci. 12:125–130.

    Article  PubMed  CAS  Google Scholar 

  80. Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Tai, K., Takahashi, H., Takahashi, T., Kuno, M., and Numa, S. (1985). Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315:761–764.

    Article  PubMed  CAS  Google Scholar 

  81. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessl, C., and Sakmann, B. (1986). Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411.

    Article  PubMed  CAS  Google Scholar 

  82. Witzemann, V., Barg, B., Nishikawa, Y, Sakmann, B., and Numa, S. (1987). Differential regulation of muscle acetylcholine receptor 7- and e-subunit mRNAs. FEBS Lett. 223:104–112.

    Article  PubMed  CAS  Google Scholar 

  83. Morris, A., Beeson, D., Jacobson, L., Baggi, F., Vincent, A., and Newsom-Davis, J. (1991). Two isoforms of the muscle acetylcholine rector of alpha-subunit are translated in the human cell line TE671. FEBS Lett. 295:116–118.

    Article  PubMed  CAS  Google Scholar 

  84. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y, Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., and Numa, S. (1984). Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307:604–608.

    Article  PubMed  CAS  Google Scholar 

  85. Henderson, L. P., and Brehm, P. (1989). The single-channel basis for the slow kinetics of synaptic currents in vertebrate slow muscle fibers. Neuron 2:1399–1405.

    Article  PubMed  CAS  Google Scholar 

  86. Brehm, P., and Henderson, L. (1988). Regulation of acetylcholine receptor channel function during development of skeletal muscle. Dev.Biol. 129:1–11.

    Article  PubMed  CAS  Google Scholar 

  87. Brehm, P. (1989). Resolving the structural basis for developmental changes in muscle ACh receptor function: It takes nerve. Trends Neurosci. 12:174–177.

    Article  PubMed  CAS  Google Scholar 

  88. Schuetze, S. M., and Role, L. W. (1987). Developmental regulation of nicotinic acetylcholine receptors. Annu. Rev. Neurosci. 10:403–457.

    Article  PubMed  CAS  Google Scholar 

  89. Noda, M., Furutani, Y, Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S. (1983). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305:818–823.

    Article  PubMed  CAS  Google Scholar 

  90. Kaminski, H. J., Kusner, L. L., and Block, C. H. (1996). Expression of acetylcholine receptor isoforms at extraocular muscle endplates. Invest. Opthamol Vis. Sci., 37:345–351.

    CAS  Google Scholar 

  91. Karlin, A., Kao, P. N., and DiPaola, M. (1986). Molecular pharmacology of the nicotinic acetylcholine receptor. Trends Pharmacol. Sci. 4:304–308.

    Article  Google Scholar 

  92. Sigworth, F. J., and Sine, S. M. (1987). Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  93. Sine, S. M., and Steinbach, J. H. (1984). Activation of a nicotinic acetylcholine receptor. Biophys. J. 45:175–185.

    Article  PubMed  CAS  Google Scholar 

  94. Auerback, A. B., and Sachs, F. (1984). Single channel currents from acetylcholine receptors in embryonic chick muscle. Kinetic and conductance properties of gaps within bursts. Biophys. J. 45:187–198.

    Article  Google Scholar 

  95. Qu, Z., Moritz, E., and Huganir, R. L. (1990). Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron 2:367–378.

    Article  Google Scholar 

  96. Safran, A., Provenzano, C., Sagi-Eisenberg, R., and Fuchs, S. (1990). Phosphorylation of membrane-bound acetylcholine receptor by protein kinase C: Characterization and subunit specificity. Biochemistry 29:6730–6734.

    Article  PubMed  CAS  Google Scholar 

  97. Rozental, R. (1991). In vitro denervation of frog skeletal muscle: Expression of several conductance classes of nicotinic receptors. Neurosci. Lett. 133:65–67.

    Article  PubMed  CAS  Google Scholar 

  98. Dionne, V. E. (1989). Two types of nicotinic acetylcholine receptor channels at slow fibre end-plates of the garter snake. J. Physiol. (London) 409:313–331.

    PubMed  CAS  Google Scholar 

  99. Ruff, R. L., and Spiegel, P. (1990). Ca sensitivity and AChR currents of twitch and tonic snake muscle fibers. Am. J. Physiol. 259:C911-C919.

    PubMed  CAS  Google Scholar 

  100. Ruff, R. L., Kaminski, H. J., Maas, E., and Spiegel, P. (1989). Ocular muscles: Physiology and structure-function correlations. Bull. Soc. Belg. Ophthalmol. 237:321–352.

    CAS  Google Scholar 

  101. Kaminski, H. J., Maas, E., Spiegel, P., and Ruff, R. L. (1990). Why are eye muscles frequently involved by myasthenia gravis? Neurology 40:1663–1669.

    PubMed  CAS  Google Scholar 

  102. Horton, R. M., Manfredi, A. A., and Conti-Tronconi, B. M. (1993). The “embryonic” gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology 43:983–986.

    PubMed  CAS  Google Scholar 

  103. Kaminski, H. J., Fenstermaker, R., and Ruff, R. L. (1991). Adult extraocular and intercostal muscle express the gamma-subunit of fetal AChR. Biophys. J. 59:444a.

    Article  Google Scholar 

  104. Dwyer, T. M., Adams, D. J., and Hille, B. (1980). The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol 75:469–492.

    Article  PubMed  CAS  Google Scholar 

  105. Dani, J. A., and Eisenman, G. (1987). Monovalent and divalent cation permeation in acetylcholine receptors channel. J. Gen. Physiol. 89:959–983.

    Article  PubMed  CAS  Google Scholar 

  106. Ruff, R. L. (1986). Ionic channels: I. The biophysical basis for ion passage and channel gating. Muscle Nerve 9:675–699.

    Article  PubMed  CAS  Google Scholar 

  107. Toyoshima, C., and Unwin, N. (1988). Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247–250.

    Article  PubMed  CAS  Google Scholar 

  108. Unwin, N., Toyoshima, C., and Kubalek, E. (1988). Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized torpedo postsynaptic membranes. J. Cell Biol. 107:1123–1138.

    Article  PubMed  CAS  Google Scholar 

  109. Kaminski, H. J., and Ruff, R. L. (1993). Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, subunit substitutions of the AChR. Ann. N. Y. Acad. Sci. 681:435–450.

    Article  PubMed  CAS  Google Scholar 

  110. Chavez, R. A., and Hall, Z. W. (1992). Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the a and δ subunits. J. Cell Biol. 116:385–393.

    Article  PubMed  CAS  Google Scholar 

  111. Kaminski, H. J., Kusner, L. L., Nash, K. V., and Ruff, R. L. (1995). The γ-subunit of the acetylcholine receptor is not expressed in the levator palpebrae superioris. Neurology 45:516–518.

    PubMed  CAS  Google Scholar 

  112. Neumann, D., Barchan, D., Horowitz, M., Kochva, E., and Fuchs, S. (1989). Snake acetylcholine receptor: Cloning of the domain containing the four extracellular cysteines of the α-subunit. Proc. Natl. Acad. Sci. USA 86:7255–7259.

    Article  PubMed  CAS  Google Scholar 

  113. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y., and Changeux, J.-P (1986). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labeled [3H]chlorpromazine. Proc. Natl. Acad. Sci. USA 83:2719–2723.

    Article  PubMed  CAS  Google Scholar 

  114. Hucho, F., Oberthür, W., and Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205:137–142.

    Article  PubMed  CAS  Google Scholar 

  115. Ruff, R. A. (1977). A quantitative analysis of local anesthetic alteration of miniature endplate current fluctuations. J. Physiol. (London) 264:89–124.

    PubMed  CAS  Google Scholar 

  116. Ruff, R. L. (1982). The kinetics of local anesthetic blockade of endplate channels. Biophys. J. 37:625–631.

    PubMed  CAS  Google Scholar 

  117. Leonard, R. J., Labarce, C. G., Charnet, P., Davidson, N., and Lester, H. A. (1988). Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  118. Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y, and Numa, S. (1986). Location of a δ subunit region determining ion transport through the acetylcholine receptor channel. Nature 324:670–674.

    Article  PubMed  CAS  Google Scholar 

  119. Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y, Fukuda, K., and Numa, S. (1988). Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 305:645–648.

    Article  Google Scholar 

  120. Morel, E., Eymard, B., Vernet-der Garabedian, B., Pannier, C., Dulac, O., and Bach, J. F. (1988). Neonatal myasthenia gravis: A new clinical and immunological appraisal on 30 cases. Neurology 38:138–142.

    PubMed  CAS  Google Scholar 

  121. Engel, A. G., Walls, T. J., Nagel, A., and Uchitel, O. (1990). Newly recognized congenital myasthenic syndromes: I. Congenital paucity of synaptic vesicles and reduced quantal release. II. High conductance fast-channel syndrome. III. Abnormal acetylcholine receptor (AChR) interaction with acetylcholine. IV. AChR deficiency and short channel open time. Prog. Brain Res. 84:125–137.

    Article  PubMed  CAS  Google Scholar 

  122. Engel, A. G., Lambert, E. H., Mulder, D. M., Torres, C. F., Sahashi, K., Bertorini, T. E., and Whitaker, J. N. (1979). Investigations of 3 cases of a newly recognized familial, congenital myasthenic syndrome. Trans. Am. Neurol. Assoc. 104:8–11.

    PubMed  CAS  Google Scholar 

  123. Mora, M., Lambert, E. H., and Engel, A. G. (1987). Synaptic vesicle abnormality in familial infantile myasthenia. Neurology 37:206–214.

    PubMed  CAS  Google Scholar 

  124. Bady, B., Chauplannaz, G., and Carrier, H. (1987). Congenital Lambert-Eaton myasthenic syndrome. J. Neurol. Neurosurg. Psychiatry 50:476–478.

    Article  PubMed  CAS  Google Scholar 

  125. Vincent, A., Newsom-Davis, J., Wray, D., Shillito, P., Harrison, J., Betty, M., Beeson, D., Mills, K., Palace, J., Molenaar, P., and Murray, N. (1993). Clinical and experimental observations in patients with congenital myasthenic syndromes. Ann. N.Y. Acad. Sci. 681:451–460.

    Article  PubMed  CAS  Google Scholar 

  126. Hutchinson, D. O., Engel, A. G., Walls, T. J., Nakano, S., Camp, S., Taylor, P., Harper, C. M., and Brengman, J. M. (1993). The spectrum of congenital end-plate acetylcholinesterase deficiency. Ann. N.Y.Acad. Sci. 681:469–486.

    Article  PubMed  CAS  Google Scholar 

  127. Engel, A. G., Lambert, E. H., and Gomez, A. R. (1977). A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetyline release. Ann. Neurol. 1:315–330.

    Article  PubMed  CAS  Google Scholar 

  128. Smit, L. M. E., Hageman, G., Veldman, H., Molenaar, P. C., Oen, B. S., and Jennekens, F. G. I. (1988). A myasthenic syndrome with congenital paucity of secondary synaptic clefts: CPSC syndrome. Muscle Nerve 11:337–348.

    Article  PubMed  CAS  Google Scholar 

  129. Wokke, J. H. J., Jennekens, F. G. I., Molenaar, P. C., Van Den Oord, C. J. M., Oen, B. S., and Busch, H. F. M. Congenital paucity of secondary synaptic clefts (CPSC) syndrome in adult sibs. Neurology 39:648–654.

    Google Scholar 

  130. Gu, Y., Franco, A., Gardner, P. D., Lansman, J. B., Forsayeth, J. R., and Hall, Z. W. (1990). Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron 5:147–157.

    Article  PubMed  CAS  Google Scholar 

  131. Engel, A. G., Uchitel, O. D., Walls, T. J., Nagel, A., Harper, C. M., and Bodensteiner, J. (1993). Newly recognized congenital myasthenic syndrome associated with high conductance and fast closure of the acetylcholine receptor channel. Ann. Neurol. 34:38–47.

    Article  PubMed  CAS  Google Scholar 

  132. Engel, A. G., Nagel, A., Walls, T. J., Harper, C. M., and Waisburg, H. A. (1993). Congenital myasthenic syndromes: I. Deficiency and short open-time of the acetylcholine receptor. Muscle Nerve 16: 1284–1292.

    Article  PubMed  CAS  Google Scholar 

  133. Engel, A. G., Hutchinson, D. O., Nakano, S., Murphy, L., Griggs, R. C., Gu, Y., Hall, Z. W, and Lindstrom, J. (1993). Myasthenic syndromes attributed to mutations affecting the epsilon subunit of the acetylcholine receptor. Ann. N. Y. Acad. Sci. 681:496–508.

    Article  PubMed  CAS  Google Scholar 

  134. Gu, Y, Camacho, P., Gardner, P., and Hall, Z. W. (1991). Identification of two amino acid residues in the e-subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells. Neuron 6:879–887.

    Article  PubMed  CAS  Google Scholar 

  135. Oosterhuis, H. J. G. H., Newsom-Davis, J., Wokke, J. H. J., Molenaar, P. C., Weerden, T. V., Oen, B. S., Jennekens, F. G. I., Veld-man, H., Vincent, A., Wray, D. W., Prior, C., and Murray, N. M. F. (1987). The slow channel syndrome. Two new cases. Brain 110:1061–1079.

    Article  PubMed  Google Scholar 

  136. Engel, A. G., Lambert, E. H., Mulder, D. M., Torres, C. F., Sahashi, K., Bertorini, T. E., Whitaker, J. N. (1982). A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann. Neurol. 11:553–569.

    Article  PubMed  CAS  Google Scholar 

  137. Uchitel, O., Engel, A. G., Wals, T. J., Nagel, A., Atassi, M. Z., and Bril, V (1993). Congenital myasthenic syndromes: II. Syndrome attributed to abnormal interaction of acetylcholine with its receptor. Muscle Nerve 16:1293–1301.

    Article  PubMed  CAS  Google Scholar 

  138. Changeux, J.-P, Devillers-Thiery, A., Galzi, J.-L., and Bertrand, D. (1992). New mutants to explore nicotinic receptor functions. Trends Pharmacol. Sci. 13:299–301.

    Article  PubMed  CAS  Google Scholar 

  139. Morgan-Hughes, J. A., Lecky, B. R. F, Landon, D. N., and Murray, N. M. F. (1981). Alterations in the number and affinity of junctional acetylcholine receptors in a myopathy with tubular aggregates. A newly recognized receptor defect. Brain 104:279–295.

    Article  PubMed  CAS  Google Scholar 

  140. Kaminski, H. J., and Ruff, R. L. (1992). Congenital disorders of neuromuscular transmission. Hosp. Pract. 39:73–86.

    Google Scholar 

  141. Engel, A. G. (1993). The investigation of congenital myasthenic syndromes. Ann. N.Y. Acad. Sci. 681:425–434.

    Article  PubMed  CAS  Google Scholar 

  142. Patrick, J., and Lindstrom, J. (1973). Autoimmune response to acetylcholine receptor. Science 180:871–872.

    Article  PubMed  CAS  Google Scholar 

  143. Lindstrom, J. M., Engel, A. G., Seybold, M. E., Lennon, V. A., and Lambert, E. H. (1976). Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J. Exp. Med. 144:739–753.

    Article  PubMed  CAS  Google Scholar 

  144. Toyka, K. V, Drachman, D. B., Griffin, D. E., and Pestronk, D. (1977). Myasthenia gravis study of humoral immune mechanisms by transfer to mice. N. Engl. J. Med. 296:125–131.

    Article  PubMed  CAS  Google Scholar 

  145. Engel, A. G., Lambert, E. H., and Howard, F. M. (1977). Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis. Ultrastructure and light microscopic localization and electrophysiological correlations. Mayo Clin. Proc. 52:267–280.

    PubMed  CAS  Google Scholar 

  146. Engel, A. G. (1987). The molecular biology of end-plate diseases. In The Vertebrate Neuromuscular Junction (M. M. Salpeter, ed.), Liss, New York, pp. 361–424.

    Google Scholar 

  147. Engel, A. G., and Fumagalli, G. (1982). Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found. Symp. 90:197–224.

    PubMed  CAS  Google Scholar 

  148. Schönbeck, S., Chrestel, S., and Hollfeld, R. (1990). Myasthenia gravis: Prototype of the antireceptor autoimmune diseases. Int. Rev. Neurobiol. 32:175–200.

    Article  PubMed  Google Scholar 

  149. Vincent, A. (1987). Disorders affecting the acetylcholine receptor: Myasthenia gravis and congenital myasthenia. J. Recept. Res. 7: 599–616.

    PubMed  CAS  Google Scholar 

  150. Molenaar, P. C. (1990). Synaptic adaptation in diseases of the neuromuscular junction. Prog. Brain Res. 84:145–149.

    Article  PubMed  CAS  Google Scholar 

  151. Asher, O., Neumann, D., Witzemann, V, and Fuchs, S. (1990). Acetylcholine receptor gene expression in experimental autoimmune myasthenia gravis. FEBS Lett. 261:231–235.

    Article  Google Scholar 

  152. Steinman, L. (1990). Immunogenetic mechanisms in myasthenia gravis. Prog. Brain Res. 84:117–124.

    Article  PubMed  CAS  Google Scholar 

  153. Smiley, J. D., and Moore, S. E. Jr. (1988). Molecular mechanisms of autoimmunity. Am. J. Med. Sci. 295:478–496.

    Article  PubMed  CAS  Google Scholar 

  154. Vincent, A., and Newsom-Davis, J. (1982). Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. Clin. Exp. Immunol. 49:257–265.

    PubMed  CAS  Google Scholar 

  155. Limburg, P. C., The, T. C., Hummel-Teppel, E., and Oosterhuis, H. (1983). Anti-acetylcholine receptor antibodies in myasthenia gravis. I. Relation to clinical parameters in 250 patients. J. Neurol. Sci. 58:357–370.

    Article  PubMed  CAS  Google Scholar 

  156. Compston, D. A. S., Vincent, A., Newsom-Davis, J., and Batchelor, J. R. (1980). Clinical, pathological, HLA antigen, and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 103:579–601.

    Article  PubMed  CAS  Google Scholar 

  157. Sprent, J. (1993). The thymus and T cell tolerance. Ann. N. Y. Acad. Sci. 681:5–15.

    Article  PubMed  CAS  Google Scholar 

  158. Wekerle, H. (1993). The thymus in myasthenia gravis. Ann. N.Y. Acad. Sci. 681:47–55.

    Article  PubMed  CAS  Google Scholar 

  159. Muller-Hermelink, H. K., Marx, A., Geuder, K., and Kirchner, T. (1993). The pathological basis of thymoma-associated myasthenia gravis. Ann. N.Y. Acad. Sci. 681:56–65.

    Article  PubMed  CAS  Google Scholar 

  160. Kaminski, H. J., Fenstermaker, R. A., Abdul-Karim, F. W., Clayman, J., and Ruff, R. L. (1993). Acetylcholine receptor subunit gene expression in thymic tissue. Muscle Nerve 16:1332–1337.

    Article  PubMed  CAS  Google Scholar 

  161. Kaminski, H. J., Al-Hakim, M., Leigh, R. J., Katirji, M. B., and Ruff, R. L. (1992). Extraocular muscle are spared in advanced Duchenne dystrophy. Ann. Neurol. 32:586–588.

    Article  PubMed  CAS  Google Scholar 

  162. Simpson, J. (1960). Myasthenia gravis: A new hypothesis. Scott. Med. J. 5: 419–436.

    Google Scholar 

  163. Leigh, R., and Zee, D. (1991). The Neurology of Eye Movements. Davis, Philadelphia.

    Google Scholar 

  164. Spencer, R. F, and Porter, J. D. (1988). Structural organization of the extraocular muscles. In Neuroanatomy of the Oculomotor System. (J. Buttner-Ennever, ed.), Elsevier, Amsterdam, pp. 33–79.

    Google Scholar 

  165. Kim, Y, Zahm, D., Liu, H., and Johns, T. (1982). Safety margin of neuromuscular transmission in rat extraocular muscle. Soc. Neurosci. 8:616.

    Google Scholar 

  166. Oh, S. J., and Eslami, N. (1987). Eight-to-ten percent decrementai response is not the normal limit for all muscles. Ann. N. Y. Acad Sci. 505:851–853.

    Article  Google Scholar 

  167. Yee, R. D., Cogna, D. G., Zee, D. S., Baloh, R. W., and Honrubia, V. (1976). Rapid eye movements in myasthenia gravis. II. Electro-oculographic analysis. Arch. Ophthalmol. 94:1465–1472.

    PubMed  CAS  Google Scholar 

  168. Abel, L., Dell’Osso, L. F, Schmidt, D., and Daroff, R. B. (1980). Myasthenia gravis: Analog computer model. Exp. Neurol. 68:378–389.

    Article  PubMed  CAS  Google Scholar 

  169. Kramer, L. D., Ruth, R. A., Johns, M. E., and Saunders, D. B. (1981). A comparison of stapedial reflex fatigue with repetitive stimulation and single-fiber EMG in myasthenia gravis. Ann. Neurol. 9:531–536.

    Article  PubMed  CAS  Google Scholar 

  170. Oda, K. (1993). Differences in acetylcholine receptor-antibody interactions between extraocular and extremity muscle fibers. Ann. N.Y Acad. Sci. 681:238–255.

    Article  PubMed  CAS  Google Scholar 

  171. Hayashi, M., Kida, K., Yamada, I., Matsuda, H., Tsuneishi, M., and Tamura, O. (1989). Differences between ocular and generalized myasthenia gravis: Binding characteristics of anti-acetylcholine receptor antibody against bovine muscles. J. Neuroimmunol. 21:227–233.

    Article  PubMed  CAS  Google Scholar 

  172. Protti, M. P., Manfredi, A. A., Howard, J. F., and Conti-Tronconi, B. M. (1991). T cells in myasthenia gravis specific for embryonic acetylcholine receptor. Neurology 41:1809–1814.

    PubMed  CAS  Google Scholar 

  173. Tzartos, S., Seybold, M., and Lindstrom, J. (1982). Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79:188–192.

    Article  PubMed  CAS  Google Scholar 

  174. Phillips, L., Torner, J., Anderson, M., and Cox, G. (1992). The epidemiology of myasthenia gravis in central and western Virginia. Neurology 42:1888–1893.

    PubMed  Google Scholar 

  175. Christensen, P., Jensen, T., Tsiropoulos, I., Sorensen, T., Kjaer, M., Hojer-Pedersen, E., Rasmussen, M., Lehfeldt, E., and de Fine Olivarius, B. (1993). Incidence and prevalence of myasthenia gravis in western Denmark 1975 to 1989. Neurology 43:1779–1783.

    PubMed  CAS  Google Scholar 

  176. Uona, M. (1980). Clinical statistics of myasthenia gravis in Japan. Int. J. Neurol. 14:87–99.

    Google Scholar 

  177. Chiu, U.C., Vincent, A., Nemsom-Davis, J., Hsieh, K.-H., and Hung, T.-P. (1987). Myasthenia gravis: Population differences in disease expression and acetylcholine receptor antibody titers between Chinese and Caucasians. Neurology 37:1854–1857.

    PubMed  CAS  Google Scholar 

  178. Grob, D., Arsura, E. L., Brunner, N. G., and Namba, T. (1987). The course of myasthenia gravis and therapies affecting outcome. Ann. N.Y.Acad. Sci. 505:472–499.

    Article  PubMed  CAS  Google Scholar 

  179. Daroff, R. B. (1980). Ocular myasthenia: Diagnosis and therapy. In Neuro-ophthalmology (J. Glaser, ed.), Mosby, St. Louis, pp. 62–71.

    Google Scholar 

  180. Kaminski, H. J., and Ruff, R. L. (1989). Neurologic complications of endocrine diseases. Neurol. Clin. 7:489–508.

    PubMed  CAS  Google Scholar 

  181. Taphoorn, M. J. B., Van Duijn, H., and Wolters, E. C. H. (1988). A neuromuscular transmission disorder: Combined myasthenia gravis and Lambert Eaton syndrome in one patient. J. Neurol. Neurosurg. Psychiatry 51:880–882.

    Article  PubMed  CAS  Google Scholar 

  182. Oh, S. J., Dweyer, D. S., and Bradley, R. J. (1987). Overlap myasthenic syndrome: Combined myasthenia gravis and Eaton-Lambert syndrome. Neurology 37:1411–1414.

    PubMed  CAS  Google Scholar 

  183. Daroff, R. B. (1986). The office tensilon test for ocular myasthenia gravis. Arch. Neurol. 43:843–844.

    PubMed  CAS  Google Scholar 

  184. Oh, S. J., and Cho, H. K. (1990). Edrophonium responsiveness not necessarily diagnostic of myasthenia gravis. Muscle Nerve 13:187–191.

    Article  PubMed  CAS  Google Scholar 

  185. Dirr, L. Y., Donofrio, P. D., Patton, J. F., and Troost, B. T. (1989). A false-positive edrophonium test in a patient with a brainstem glioma. Neurology 39:865–867.

    PubMed  CAS  Google Scholar 

  186. Moorthy, G., Behrens, M. M., Drachman, D. B., Kirkham, T. H., Knox, D. L., Miller, N. R., Slamovitz, T. L., and Zinreich, S. J. (1989). Ocular pseudomyasthenia or ocular myasthenia “plus”: A warning to clinicians. Neurology 39:1150–1154.

    PubMed  CAS  Google Scholar 

  187. Kelly, J. J., Daube, J. R., Lennon, V. A., Howard, F. M., and Younge, B. R. (1982). The laboratory diagnosis of mild myasthenia gravis. Ann. Neurol. 12:238–242.

    Article  PubMed  Google Scholar 

  188. Oh, S. J., Kim, D. E., Kuruoglu, R., Bradley, R. J., and Dwyer, D. (1992). Diagnostic sensitivity of the laboratory tests in myasthenia gravis. Muscle Nerve 15:720–724.

    Article  PubMed  CAS  Google Scholar 

  189. Lanska, D. J. (1991). Diagnosis of thymoma in myasthenics using anti-striated muscle antibodies: Predictive value and gain in diagnostic certainty. Neurology 41:520–524.

    PubMed  CAS  Google Scholar 

  190. Birmanns, B., Brenner, T., Abramsky, O., and Steiner, I. (1991). Seronegative myasthenia gravis: Clinical features, response to therapy and synthesis of acetylcholine receptor antibodies in vitro. J. Neurol. Sci. 102:184–189.

    CAS  Google Scholar 

  191. Mossman, S., Vincent, A., and Newsom-Davis, J. (1986). Myasthenia gravis without acetylcholine receptor antibody: A distinct disease entity. Lancet 1:116–119.

    Article  PubMed  CAS  Google Scholar 

  192. Soliven, B. C., Lange, D. J., Penn, A. S., Younger, D., Jaretzki, A., Lovelace, R. E., and Rowland, L. P. (1988). Seronegative myasthenia gravis. Neurology 38:514–517.

    PubMed  CAS  Google Scholar 

  193. Rowland, L. P. (1980). Controversies about the treatment of myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 43:644–659.

    Article  PubMed  CAS  Google Scholar 

  194. Pascuzzi, R. M., Coslett, H. B., and Johns, T. R. (1984). Long-term corticosteroid treatment of myasthenia gravis: Report of 116 patients. Ann. Neurol. 15:291–298.

    Article  PubMed  CAS  Google Scholar 

  195. Beghi, E., Antozzi, C., Batocchi, A. P., Cornelio, F., Cosi, V, Evoli, A., Lombardi, M., Mantegazzi, R., Monticelli, M. L., Piccolo, G., Tonali, P., Trevisan, D., and Zarrelli, M. (1991). Prognosis of myasthenia gravis: A multicenter follow-up study. J. Neurol. Sci. 106:213–220.

    Article  PubMed  CAS  Google Scholar 

  196. Seybold, M., and Drachman, D. (1974). Gradually increasing doses of prednisone in myasthenia gravis: Reducing the hazards of treatment. N. Engl. J. Med. 290:81–84.

    Article  PubMed  CAS  Google Scholar 

  197. Durelli, L., Maggi, G., Casadio, C., Ferri, R., Rendine, S., and Bergamini, L. (1991). Actuarial analysis of the occurrence of remissions following thymectomy for myasthenia gravis in 400 patients. J. Neurol. Neurosurg. Psychiatry 54:406–411.

    Article  PubMed  CAS  Google Scholar 

  198. Lanska, D. J. (1990). Indications for thymectomy in myasthenia gravis. Neurology 40:1828–1829.

    PubMed  CAS  Google Scholar 

  199. Olanow, C. W., Wechsler, A. S., Sirotkin-Roses, M., Stajich, J., and Roses, A. D. (1987). Thymectomy as primary therapy in myasthenia gravis. Ann. N.Y. Acad. Sci. 505:595–606.

    Article  PubMed  CAS  Google Scholar 

  200. Olanow, C. W., Lane, R. J. M., and Roses, A. D. (1982). Thymectomy in late-onset myasthenia gravis. Arch. Neurol. 39:82–83.

    PubMed  CAS  Google Scholar 

  201. Hohlfeld, R., Michels, M., Heininger, K., Besinger, U., and Toyka, K. V. (1988). Azathioprine toxicity during long-term immunosuppression of generalized myasthenia gravis. Neurology 38:258–261.

    PubMed  CAS  Google Scholar 

  202. Witte, A. S., Cornblath, D. R., Parry, G. J., Lisak, R. P., and Schatz, N. J. (1984). Azathioprine in the treatment of myasthenia gravis. Ann. Neurol. 15:602–605.

    Article  PubMed  CAS  Google Scholar 

  203. Perez, M., Buot, W. L., Mercado-Danguilan, C., Bagabaldo, Z. G., and Renales, L. D. (1981). Stable remissions in myasthenia gravis. Neurology 31:32–37.

    PubMed  CAS  Google Scholar 

  204. Tindall, R. S. A., Phillips, J. T, Rollins, J. A., Wells, L., and Hall, K. (1993). A clinical therapeutic trial of cyclosporine in myasthenia gravis. Ann. N.Y. Acad. Sci. 681:539–551.

    Article  PubMed  CAS  Google Scholar 

  205. Pinching, A. J., Peters, D. K., and Newsom-Davis, J. (1976). Remission of myasthenia gravis following plasma exchange. Lancet 2:1373–1376.

    Article  PubMed  CAS  Google Scholar 

  206. Seybold, M. E. (1987). Plasmapheresis in myasthenia gravis. Ann. N.Y. Acad. Sci. 505:584–587.

    Article  PubMed  CAS  Google Scholar 

  207. Ferrero, B., Durelli, L., Cavallo, R., Dutto, A., Aimo, G., Pecchio, F., and Bergamasco, B. (1993). Therapies for exacerbation of myasthenia gravis. The mechanism of action of intravenous highdose immunoglobulin. Ann. N.Y.Acad. Sci. 681:563–566.

    Article  PubMed  CAS  Google Scholar 

  208. Gajdos, P., Outin, H., Elkharray, D., Brunei, D., Rohan-Chabot, P. D., Raphael, J. C., Goulon, M., Goulon-Goeau, C., and Geursen, R. G. (1984). High-dose intravenous gammaglobulin for myasthenia gravis. Lancet 1:406–407.

    Article  PubMed  CAS  Google Scholar 

  209. Gajdos, P., Outin, H. D., Morel, E., Raphael, J. C., and Goulon, M. (1987). High-dose intravenous gamma globulin for myasthenia gravis: An alternative to plasma exchange. Ann. N.Y. Acad. Sci. 505:842–844.

    Article  Google Scholar 

  210. Uchiyama, M., Ichikawa, Y, Takaya, M., Moriuchi, J., Shimizu, H., and Arimori, S. (1987). High-dose gammaglobulin therapy of generalized myasthenia gravis. Ann. N.Y. Acad. Sci. 505:868–871.

    Article  Google Scholar 

  211. Durelli, L., Ferrio, M. F., Urgesi, A., Poccardi, G., Ferrero, B., and Bergamini, L. (1993). Total body irradiation for myasthenia gravis: A long-term follow-up. Neurology 43:2215–2221.

    PubMed  CAS  Google Scholar 

  212. Lambert, E. H., Eaton, L. M., and Rooke, E. D. (1956). Defect of neuromuscular transmission associated with malignant neoplasm. Am. J. Physiol. 187:612–613.

    Google Scholar 

  213. Lambert, E. H., Rooke, E. D., Eaton, L. M., and Hodgson, C. H. (1961). Myasthenic syndrome occasionally associated with bronchial neoplasm: Neurophysiologic studies. In Myasthenia Gravis (H. R. Viets, ed.), Thomas, Springfield, pp. 362–410.

    Google Scholar 

  214. O’Neill, J. H., Murray, N. M. E, and Newsom-Davis, J. (1988). The Lambert-Eaton myasthenic syndrome. A review of 50 cases. Brain 111:577–596.

    Article  PubMed  Google Scholar 

  215. Rooke, E. D., Eaton, L. M., Lambert, E. H., and Hodgson, C. H. (1960). Myasthenia and malignant intrathoracic tumor. Med. Clin. North Am. 44:977–988.

    PubMed  CAS  Google Scholar 

  216. Satoyoshi, E., Kowa, H., and Fukunaga, N. (1973). Subacute cerebellar degeneration in Eaton-Lambert syndrome with bronchogenic carcinoma. Neurology 23:764–768.

    PubMed  CAS  Google Scholar 

  217. Elmqvist, D., and Lambert, E. H. (1968). Detailed analysis of neuromuscular transmission in a patient with the myasthenic syndrome sometimes associated with bronchogenic carcinoma. Mayo Proc.Clin. 43:689–713.

    CAS  Google Scholar 

  218. Lambert, E. H., and Lennon, V. A. (1982). Neuromuscular transmission in nude mice bearing oat-cell tumors from Lambert-Eaton myasthenic syndrome. Muscle Nerve 5:S39-S45.

    Article  PubMed  CAS  Google Scholar 

  219. Oguro-Okamoto, M., Griesman, G. E., Wieben, E. D., Slaymaker, S. J., Snutch, T. P., and Lennon, V. A. (1992). Molecular diversity of neuronal-type calcium channels identified in small cell lung carcinoma. Mayo Clin. Proc. 67:1150–1159.

    Google Scholar 

  220. Newsom-Davis, J., Leys, K., Vincent, A., Ferguson, I., Modi, G., and Mills, K. (1991). Immunological evidence for the co-existence of the Lambert-Eaton myasthenic syndrome and myasthenia gravis in two patients. J. Neurol. Neurosurg. Psychiatry. 54:452–453.

    Article  PubMed  CAS  Google Scholar 

  221. Trontelj, J. V., and Stalberg, E. (1990). Single motor endplates in myasthenia gravis and LEMS at different firing rates. Muscle Nerve 14:226–232.

    Article  Google Scholar 

  222. Lambert, E. H., and Elmqvist D. (1971). Quantal components of end-plate potentials in the myasthenic syndrome. Ann. N.Y. Acad. Sci. 183:183–199.

    Article  PubMed  CAS  Google Scholar 

  223. Molenaar, R C., Newsom-Davis, J., Polak, R. L., Vincent, A., and Murray, N. (1982). Eaton-Lambert syndrome: Acetylcholine and choline acetyltransferase in skeletal muscle. Neurology 32:1062–1065.

    Google Scholar 

  224. Cull-Candy, S. G., Meledi, R., Trautmann, A., and Uchitel, O. D. (1980). On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J. Physiol. (London) 299:621–638.

    PubMed  CAS  Google Scholar 

  225. Streib, E. W., and Rothner, A. D. (1981). Eaton-Lambert myasthenic syndrome: Long-term treatment of three patients with prenisone. Ann. Neurol. 10:448–453.

    Article  PubMed  CAS  Google Scholar 

  226. Lang, B., Newsom-Davis, J., Wray, D. W., and Vincent, A. (1981). Autoimmune aetiology for myasthenic (Lambert-Eaton) syndrome. Lancet 2:224–226.

    Article  PubMed  CAS  Google Scholar 

  227. Lennon, V. A., Lambert, E. H., Whittingham, S., and Fairbainks, V. (1982). Autoimmunity in the Lambert-Eaton myasthenic syndrome. Muscle Nerve 5:S21-S25.

    PubMed  CAS  Google Scholar 

  228. Newsom-Davis, J., and Murray, N. M. F. (1984). Plasma exchange and immunosuppressive drug treatment in the Lambert-Eaton myasthenic syndrome. Neurology 34:480–485.

    PubMed  CAS  Google Scholar 

  229. Fukunaga, H., Engel, A. G., Osame, M., and Lambert, E. H. (1982). Paucity and disorganization of presynaptic membrane active zones in the Lambert-Eaton myasthenic syndrome. Muscle Nerve 5:686–697.

    Article  Google Scholar 

  230. Fukunaga, H., Engel, A. G., Lang, B., Newsom-Davis, B., and Vincent, A. (1983). Passive transfer of Lambert-Eaton myasthenic syndrome IgG from man to mouse depletes the presynaptic membrane active zones. Proc. Natl. Acad. Sci. USA 80:7636–7640.

    Article  PubMed  CAS  Google Scholar 

  231. Fukuoka, T., Engel, A. G., Lang, B., Newsom-Davis, J., Prior, C., and Wray, D. W. (1987). Lambert-Eaton myasthenic syndrome: I. Early morphologie effects of IgG on the presynaptic membrane active zones. Ann. Neurol. 22:193–199.

    Article  PubMed  CAS  Google Scholar 

  232. Fukuoka, T., Engel, A. G., Lang, B., Newsom-Davis, J., and Vincent, A. (1987). Lambert-Eaton myasthenic syndrome. II. Immunoelectron microscopy localization of IgG at the mouse motor end-plate. Ann. Neurol. 22:200–211.

    Article  PubMed  CAS  Google Scholar 

  233. Nagel, A., Engel, A. G., Lang, B., Newsom-Davis, J., and Fukuoka, T. (1988). Lambert-Eaton syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann. Neurol. 24:552–558.

    Article  PubMed  CAS  Google Scholar 

  234. Lang, B., Vincent, A., Murray, N. M. F., Newsom-Davis, J. (1989). Lambert-Eaton myasthenic syndrome: Immunoglobulin G inhibition of Ca2+ flux in tumor cells correlates with disease severity. Ann. Neurol. 25:265–271.

    Article  PubMed  CAS  Google Scholar 

  235. Kim, Y. I., and Neher, E. (1988). IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science. 239:405–408.

    Article  PubMed  CAS  Google Scholar 

  236. Peers, C., Lang, B., Newsom-Davis, J., and Wray, D. W. (1987). Selective action of Lambert-Eaton myasthenic syndrome antibodies on calcium channels in a rodent neuroblastoma X glioma hybrid cell line. J. Physiol. (London) 421:293–308.

    Google Scholar 

  237. Lang, B., Johnston, I., Leys, K., Elrington, G., Marqueze, B., Leveque, C., Martin-Moutot, N., Seagar, M., Hoshino, T., Takahashi, M., Sugimori, M., Cherksey, B. D., Llinas, R., and Newsom-Davis, J. (1993). Autoantibody specificities in Lambert-Eaton myasthenic syndrome. Ann. N.Y.Acad. Sci. 681:382–391.

    Article  PubMed  CAS  Google Scholar 

  238. Lennon, V. A., and Lambert, E. H. (1989). Antibodies bind solubilized calcium channel-omega-conotoxin complexes from small cell lung carcinoma: A diagnostic aid for Lambert-Eaton myasthenic syndrome. Mayo Clin. Proc. 64:1498–1504.

    PubMed  CAS  Google Scholar 

  239. Leys, K., Lang, B., Johnston, I., and Newsom-Davis, J. (1991). Calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome. Ann. Neurol. 29:307–314.

    Article  PubMed  CAS  Google Scholar 

  240. Sher, E., Gotti, C., Canal, N., Scopetta, C., Piccolo, G., Evoli, A., and Clementi, F (1989). Specificity of calcium channel autoantibodies in Lambert-Eaton myasthenic syndrome. Lancet 2:640–643.

    Article  PubMed  CAS  Google Scholar 

  241. Blandino, J. K. W., and Kim, Y. I. (1993). Lambert-Eaton syndrome IgG inhibits dihydropyridine-sensitive, slowly inactivating calcium channels in bovine adrenal chromaffin cells. Ann. N.Y. Acad. Sci. 681:394–397.

    Article  PubMed  CAS  Google Scholar 

  242. Viglione, M. P., Blandino, J. K. W., and Kim, Y. I. (1993). Effects of Lambert-Eaton syndrome serum and IgG on calcium and sodium currents in small-cell lung cancer cells. Ann. N.Y. Acad. Sci. 681:418–421.

    Article  PubMed  CAS  Google Scholar 

  243. Takamori, M., Hamada, T., Komai, K., Takahashi, M., and Yoshida, A. (1994). Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats. Ann. Neurol. 35:74–80.

    Article  PubMed  CAS  Google Scholar 

  244. Rosenfeld, M. R., Wong, E., Dalmau, J., Manley, G., Egan, D., Posner, J. P., Sher, E., and Furneaux, H. M. (1993). Sera from patients with Lambert-Eaton myasthenic syndrome recognize the β-subunit of Ca2+ channel complexes. Ann. N.Y. Acad. Sci. 681:408–411.

    Article  PubMed  CAS  Google Scholar 

  245. Engel, A. G., Fukuoka, T., Lang, B., Newsom-Davis, J., Vincent, A., and Wray, D. W. (1982). Lambert-Eaton myasthenic syndrome IgG: Early morphologie effects and immunolocalization at the motor end-plate. Ann. N.Y. Acad. Sci. 505:333–345.

    Article  Google Scholar 

  246. Engel, A. G. (1986). Myasthenic syndromes. In Myology (A. G. Engel and B. Q. Banker, eds.), McGraw-Hill, New York, pp. 1955–1990.

    Google Scholar 

  247. Chalk, C. H., Murray, N. M. F., Newsom-Davis, J., O’Neill, J. H., and Spiro, S. G. (1990). Response of the Lambert-Eaton myas thenic syndrome to treatment of associated small-cell lung carcinoma. Neurology 40:1552–1556.

    PubMed  CAS  Google Scholar 

  248. Otsuka, M., and Endo, M. (1960). The effect of guanidine on neuromuscular transmission. J. Pharmacol. Exp. Ther. 128:273–282.

    PubMed  CAS  Google Scholar 

  249. Cherington, M. (1976). Guanidine and germaine in Lambert-Eaton syndrome. Neurology 26:944–946.

    PubMed  CAS  Google Scholar 

  250. Saint, D. A. (1989). The effects of 4-aminopyridine and tetraethy-lammonium on the kinetics of transmitter release at the mammalian neuromuscular synapse. Can. J. Physiol. Pharmacol. 67:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  251. McEvoy, K. ML, Windebank, A. J., Daube, J. R., and Low, P. A. (1989). 3,4-Diaminopyridine in the treatment of Lambert-Eaton myasthenic syndrome. N. Engl. J. Med. 321:1567–1571.

    Article  PubMed  CAS  Google Scholar 

  252. Bird, S. J. (1991). Clinical and electrophysiologic improvement in the Lambert-Eaton syndrome with intravenous immunoglobulin therapy. Muscle Nerve 14:913–914.

    Google Scholar 

  253. Engel, A. G., Lambert, E. H., Mulder, D. M., Gomez, M. R., Whitaker, J. H., Hart, Z., and Sahashi, K. (1981). Recently recognized congenital myasthenic syndromes: A) Endplate acetylcholine (ACh) esterase deficiency, B) putative abnormality of the ACh induced ion channel, C) putative defect of ACh resynthesis or mobilization-Clinical features, ultrastructure and cytochemistry. Ann. N.Y. Acad. Sci. 377:614–639.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Kaminski, H.J., Ruff, R.L. (1996). The Myasthenic Syndromes. In: Schultz, S.G., Andreoli, T.E., Brown, A.M., Fambrough, D.M., Hoffman, J.F., Welsh, M.J. (eds) Molecular Biology of Membrane Transport Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1143-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1143-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8446-8

  • Online ISBN: 978-1-4613-1143-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics