Sodium Transport by Epithelial Cells

  • Lawrence G. Palmer


The Koefoed-Johnsen and Ussing model for Na transport by the frog skin is now more than 35 years old. One of the purposes of this chapter is to pay homage to this simple but brilliant insight into how epithelial cells work. In addition, the model will be updated in terms of the transporters involved in the Na reabsorption process. As we shall see, this is not really a refinement of the model, since most of these transporters are precisely those postulated in the original paper.1 We do have, however, a great deal more information on their functional and molecular properties. Another goal of this chapter will be to review the regulation of the individual components of the system, and of the system as a whole. A final topic is the question of which ions are transported along with Na or in exchange for Na to preserve electroneutrality, and what mechanisms are involved in this transport.


Apical Membrane Basolateral Membrane Frog Skin Epithelial Sodium Channel Toad Urinary Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koefoed-Johnsen, V., and Ussing, H. H. (1958). On the nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
  2. 2.
    Palmer, L. G., and Sackin, H. (1992). Electrophysiological analysis of transepithelial transport. In The Kidney: Physiology and Pathophysiology (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 361-405.Google Scholar
  3. 3.
    Garty, H., and Benos, D. J. (1988). Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 68:309–373.PubMedGoogle Scholar
  4. 4.
    Palmer, L. G. (1992). Epithelial Na channels: Function and diversity. Annu. Rev. Physiol. 54:51–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Rossier, B. C, and Palmer, L. G. (1992). Mechanisms of aldosterone action on sodium and potassium transport in The Kidney: Physiology and Pathophysiology (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, Volume 1, pp. 1373–1409.Google Scholar
  6. 6.
    Burckhardt, G., and Greger, R. (1992). Principles of electrolyte transport across plasma membranes of renal tubular cells. In Handbook of Physiology Section 8: Renal Physiology (E. E. Windhager, ed.), Oxford University Press, London, pp. 639–657.Google Scholar
  7. 7.
    Burckhardt, G., and Kinne, R. K. H. (1992). Transport proteins: Co-transporters and countertransporters. In The Kidney: Physiology and Pathophysiology (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 537–586.Google Scholar
  8. 8.
    De Weer, P. (1992). Cellular sodium-potassium transport. In The Kidney: Physiology and Pathophysiology (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 93–112.Google Scholar
  9. 9.
    Horisberger, J.-D., Lemas, V., Kraehenbuhl, J. P., and Rossier, B. C. (1991). Structure-function relationship of Na,K-ATPase. Annu. Rev. Physiol. 53:565–584.PubMedCrossRefGoogle Scholar
  10. 10.
    Jorgensen, P. L. (1982). Mechanism of the Na,K-ion pump. Protein structure and conformations of the pure Na,K-ATPase. Biochim. Biophys. 694:27–68.Google Scholar
  11. 11.
    Jorgensen, P. L. (1986). Structure, function and regulation of Na,K-ATPase in the kidney. Kidney Int. 29:10–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Sweadner, K. J. (1989). Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta 988:185–220.PubMedGoogle Scholar
  13. 13.
    Tymiak, A. A., Norman, J. A., Bolgar, M., DiDonato, G. C, Lee, H., Parker, W. L., Lo, L.-C, Berova, N., Nakanishi, K., Haber, E., and Haupert, G. T. J. (1993). Physicochemical characterization of a ouabain isomer isolated from bovine hypothalamus. Proc. Nat. Acad. Sci. USA 90:8189–8193.PubMedCrossRefGoogle Scholar
  14. 14.
    Ernst, S. A., and Mills, J. W. (1980). Autoradiographic localization of tritiated ouabain-sensitive sites in ion transporting epithelia. J. Histochem. Cytochem. 28:72–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Zurzolo, C, Rodriguez-Boulan, E., Gottardi, C. J., Caplan, M., Siemers, K. A., Wilson, R., Mays, R. W., Ryan, T. A., Wollner, D. A., and Nelson, W. J. (1993). Delivery of Na+,K+-ATPase in polarized epithelial cells (Technical Comment). Science 260:550–556.PubMedCrossRefGoogle Scholar
  16. 16.
    Caplan, M. J., Anderson, H. C, Palade, G. E., and Jamieson, J. D. (1986). Intracellular sorting and polarized cell surface delivery of Na,K-ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 46:623–631.PubMedCrossRefGoogle Scholar
  17. 17.
    Hammerton, R. W., Krzeminski, K. A., Mays, R. W., Wollner, D. A., and Nelson, W. J. (1991). Mechanism for regulating cell surface distribution of Na+,K+-ATPase in polarized epithelial cells. Science 254:847–853.PubMedCrossRefGoogle Scholar
  18. 18.
    Kirk, K. L., Halm, D. R., and Dawson, D. C. (1980). Active sodium transport by turtle colon via an electrogenic Na-K exchange pump. Nature 287:237–239.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis, S. A., and Wills, N. K. (1983). Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder. J. Physiol. (London) 341:169–184.PubMedGoogle Scholar
  20. 20.
    Palmer, L. G., and Speez, N. (1986). Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am. J. Physiol. 250:F273-F281.PubMedGoogle Scholar
  21. 21.
    Avison, M. J., Gullans, S. R., Ogino, T., Giebisch, G., and Shulman, R. G. (1987). Measurement of Na+-K+ coupling ratio of Na+-K+-ATPase in rabbit proximal tubules. Am. J. Physiol. 253:C126-C136.PubMedGoogle Scholar
  22. 22.
    Cox, T. C, and Helman, S. I. (1986). Na+ and K+ transport at basolateral membranes of epithelial cells. I. Stoichiometry of the Na,K-ATPase. J. Gen. Physiol. 87:467–483.PubMedCrossRefGoogle Scholar
  23. 23.
    Sackin, H., and Boulpaep, E. L. (1983). Rheogenic transport in the renal proximal tubule. J. Gen. Physiol. 82:819–851.PubMedCrossRefGoogle Scholar
  24. 24.
    Sansom, S. C, and O’Neil, R. G. (1986). Effects of mineralocorti-coids on transport properties of cortical collecting duct basolateral membrane. Am. J. Physiol. 251:F743-F757.PubMedGoogle Scholar
  25. 25.
    Post, R. L., Merritt, C. R., Kinsolving, C. R., and Albright, C. D. (1960). Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J. Biol. Chem. 235:1796–1802.PubMedGoogle Scholar
  26. 26.
    Green, A. L., and Taylor, C. B. (1964). Kinetics of (Na+ + K+)-stimulated ATPase of rabbit kidney microsones. Biochem. Biophys. Res. Commun. 14:118–123.PubMedCrossRefGoogle Scholar
  27. 27.
    Lindenmayer, G. E., Schwartz, A., and Thompson, H. K. (1974). A kinetic description for sodium and potassium effects on (Na+ + K+)- adenosine triphosphatase: A model for a two-nonequivalent site potassium activation and analysis of multiequivalent site models for sodium activation. J. Physiol. (London) 236:1–28.PubMedGoogle Scholar
  28. 28.
    Halm, D. R., and Dawson, D. C. (1983). Cation activation of the ba-solateral sodium-potassium pump in turtle colon. J. Gen. Physiol. 82:315–329.Google Scholar
  29. 29.
    Rossier, B. C, Canessa, C. M, Schild, L., and Horisberger, J.-D. (1994). Epithelial sodium channels. Curr. Opin. Nephrol. Hyper-tens., 3:487–496.CrossRefGoogle Scholar
  30. 30.
    Eaton, D. C, and Hamilton, K. L. (1988). The amiloride-blockable sodium channel of epithelial tissue. In Ion Channels (T. Narahashi, ed.), Plenum Press, New York, Volume 1, pp. 151–182.Google Scholar
  31. 31.
    Smith, P. R., and Benos, D. J. (1991). Epithelial Na+ channels. Annu. Rev. Physiol. 53:509–530.PubMedCrossRefGoogle Scholar
  32. 32.
    Palmer, L. G. (1991). The epithelial Na channel: Inferences about the nature of the conducting pore. Comments Mol. Cell. Biophys. 7:259–283.Google Scholar
  33. 33.
    Palmer, L. G. (1987). Ion selectivity of epithelial Na channels. J. Memb. Biol. 96:97–106.CrossRefGoogle Scholar
  34. 34.
    Hille, B. (1992). Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.Google Scholar
  35. 35.
    Lindemann, B. (1984). Fluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46:497–515.PubMedCrossRefGoogle Scholar
  36. 36.
    Palmer, L. G., and Frindt, G. (1988). Conductance and gating of epithelial Na channels from rat cortical collecting tubules. Effects of luminal Na and Li. J. Gen. Physiol. 92:121–138.PubMedCrossRefGoogle Scholar
  37. 37.
    Marunaka, Y., and Eaton, D. C. (1991). Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am. J. Physiol. 260:C1071-C1084.PubMedGoogle Scholar
  38. 38.
    Ling, B. N., and Eaton, D. C. (1989). Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am. J. Physiol. 256:F1094-F1103.PubMedGoogle Scholar
  39. 39.
    Palmer, L. G., and Frindt, G. (1996). Gating of Na channels in the rat cortical collecting tubule: Effects of voltage and membrane stretch. J. Gen. Physiol., in press.Google Scholar
  40. 40.
    Palmer, L. G., and Frindt, G. (1986). Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc. Nat. Acad. Sci. USA 83:2767–2770.PubMedCrossRefGoogle Scholar
  41. 41.
    Frindt, G., Silver, R. B., Windhager, E. E., and Palmer, L. G. (1993). Feedback inhibition of Na channels in rat CCT. II. Effects of inhibition of Na entry. Am. J. Physiol. 264:F565-F574.PubMedGoogle Scholar
  42. 42.
    Palmer, L. G., and Kleyman, T. R. (1995). Potassium-sparing diuretics: Amiloride. In Handbook of Experimental Pharmacology, Diuretics (E. Mutschler and R. Greger, eds), Springer-Verlag, Berlin.Google Scholar
  43. 43.
    Kleyman, T. R., and Cragoe, E. J. J. (1988). Amiloride and its analogs as tools in the study of ion transport. J. Memb. Biol. 105:1–21.CrossRefGoogle Scholar
  44. 44.
    Benos, D. J. (1982). Amiloride: A molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242:031–045.Google Scholar
  45. 45.
    Eaton, D. C, and Marunaka, Y (1990). Ion channel fluctuations: “Noise” and single-channel measurements. Curr. Top. Membr. Transp. 37:61–113.Google Scholar
  46. 46.
    Palmer, L. G., and Andersen, O. S. (1989). Interactions of amiloride and small monovalent cations with the epithelial sodium channel. Inferences about the nature of the channel pore. Biophys. J. 55: 779–787.PubMedCrossRefGoogle Scholar
  47. 47.
    Cantiello, H. F., Stow, J., Prat, A. G., and Ausiello, D. A. (1991). Actin filaments control epithelial Na+ channel activity. Am. J. Physiol. 261:C882-C888.PubMedGoogle Scholar
  48. 48.
    Light, D. B., Corbin, J. D., and Stanton, B. A. (1990). Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255:F278-F286.Google Scholar
  49. 49.
    Chinet, T. C., Fulton, J. M., Yankaskas, J. R., Coucher, R. C, and Stutts, M. J. (1993). Sodium-permeable channels in the apical membrane of human nasal epithelial cells. Am. J. Physiol. 265:0050-C1060.Google Scholar
  50. 50.
    Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M., and Barbry, P. (1993). Expression cloning of an epithelial amiloride-sensitive Na+ channel. FEBS Lett 318:95–99.PubMedCrossRefGoogle Scholar
  51. 51.
    Canessa, C. M., Horisberger, J.-D., and Rossier, B. C. (1993). Epithelial sodium channel related to proteins involved in neurodegen-eration. Nature 361:467–470.PubMedCrossRefGoogle Scholar
  52. 52.
    Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, Y, Horisberger, J.-D., and Rossier, B. C. (1994). The amiloride-sensitive epithelial sodium channel is made of three homologous sub-units. Nature 367:463–467.PubMedCrossRefGoogle Scholar
  53. 53.
    Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M., and Barbry, P. (1994). Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J. Biol Chem. 269:12981–12986.PubMedGoogle Scholar
  54. 54.
    Canessa, C. M., Mérillat, A.-M., and Rossier, B. C. (1994). Membrane topology of the epithelial sodium channel. Am. J. Physiol. 267:0682–0690.Google Scholar
  55. 55.
    Oh, Y, and Benos, D. J. (1993). Single-channel characteristics of a purified bovine renal amiloride-sensitive Na+ channel in planar lipid bilayers. Am. J. Physiol. 264:0489–0499.Google Scholar
  56. 56.
    Sariban-Sohraby, S., Abramov, M., and Fisher, R. S. (1992). Single-channel behavior of a purified epithelial Na+ channel subunit that binds amiloride. Am. J. Physiol. 263:0111–0117.Google Scholar
  57. 57.
    Nagel, W. (1985). Basolateral membrane ionic conductance in frog skin. Pfluegers Arch. 405:S39-S43.CrossRefGoogle Scholar
  58. 58.
    Horisberger, J.-D., and Giebisch, G. (1988). Voltage dependence of the basolateral membrane conductance in the Amphiuma collecting tubule. J. Membr. Biol. 105:257–263.PubMedCrossRefGoogle Scholar
  59. 59.
    Broillet, M.-C, and Horisberger, J. D. (1993). Basolateral membrane potassium conductance of A6 cells. J. Membr. Biol. 124:1–12.Google Scholar
  60. 60.
    Garcia-Diaz, J. F. (1991). Whole-cell and single channel K+ and Cl-currents in epithelial cells of frog skin. J. Gen. Physiol. 98:131–161.PubMedCrossRefGoogle Scholar
  61. 61.
    Urbach, V, Van Kerkhove, E., and Harvey, B. J. (1994). Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium. J. Gen. Physiol. 103:583–604.PubMedCrossRefGoogle Scholar
  62. 62.
    Ashcroft, F. M. (1988). Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci. 11:97–118.PubMedCrossRefGoogle Scholar
  63. 63.
    Matsuda, H., Saigusa, A., and Irisawa, H. (1987). Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159.PubMedCrossRefGoogle Scholar
  64. 64.
    Hirsch, J., and Schlatter, E. (1993). K+ channels in the basolateral membrane of rat cortical collecting duct. Pfluegers Arch. 424:470–477.CrossRefGoogle Scholar
  65. 65.
    Germann, W. J., Ernst, S. A., and Dawson, D. C. (1986). Resting and osmotically induced basolateral K conductances in turtle colon. J. Gen. Physiol. 88:253–274.PubMedCrossRefGoogle Scholar
  66. 66.
    Broillet, M.-C, and Horisberger, J.-D. (1993). Tolbutamide-sensi-tive potassium conductance in the basolateral membrane of A6 cells. J. Membr. Biol. 134:181–188.PubMedGoogle Scholar
  67. 67.
    Kubo, Y, Baldwin, T. J., Jan, Y. N., and Jan, L. Y (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhou, H., Tate, S. S., and Palmer, L. G. (1994). Primary structure and functional properties of an epithelial K channel. Am. J. Physiol. 266:C809-C824.PubMedGoogle Scholar
  69. 69.
    Ho, K. H., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V, and Hebert, S. C. (1993). Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–37.PubMedCrossRefGoogle Scholar
  70. 70.
    Richards, N. W., and Dawson, D. C. (1986). Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am. J. Physiol. 251:C85-C89.PubMedGoogle Scholar
  71. 71.
    Chang, D., and Dawson, D. C. (1988). Digitonin-permeabilized colonic cell layers. J. Gen. Physiol. 92:281–306.PubMedCrossRefGoogle Scholar
  72. 72.
    Sharp, G. W. G., and Leaf, A. (1966). Mechanism of action of aldosterone. Physiol. Rev. 46:593–633.PubMedGoogle Scholar
  73. 73.
    Civan, M. M., and Shporer, M. (1989). Physical state of cell sodium. Curr. Top. Membr. Transp. 34:1–19.Google Scholar
  74. 74.
    Palmer, L. G., Antonian, L., and Frindt, G. (1993). Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:43–57.PubMedCrossRefGoogle Scholar
  75. 75.
    Garty, H. (1986). Mechanisms of aldosterone action in tight epithe-lia (topical review). J. Membr. Biol. 90:193–205.PubMedCrossRefGoogle Scholar
  76. 76.
    Garty, H. (1992). Regulation of Na+ permeability by aldosterone. Semin. Nephrol. 12:24–29.PubMedGoogle Scholar
  77. 77.
    Laragh, J. (1992). The renin system and the renal regulation of blood pressure. In The Kidney: Physiology and Pathophysiology, Second Edition (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 1411–1453.Google Scholar
  78. 78.
    Oberleithner, H., Weigt, M., Westphale, H.-J., and Wang, W. (1987). Aldosterone activates Na+-H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc. Nat. Acad. Sci. USA 84:1464–1468.PubMedCrossRefGoogle Scholar
  79. 79.
    Harvey, B. J., and Urbach, V. (1993). Regulation of ion and water transport by hydrogen ions in high resistance epithelia. In Advances in Environmental and Comparative Physiology 22. Acid-Base Regulation, Ion Transfer and Metabolism, Springer-Verlag, Berlin, pp. 153–183.Google Scholar
  80. 80.
    Bastl, C. P., Schulman, G., and Cragoe, E. J. J. (1989). Low-dose glucocorticoids stimulate electroneutral NaCl absorption in rat colon. Am. J. Physiol. 257:F1027-F1038.PubMedGoogle Scholar
  81. 81.
    Wehling, M., Käsmayr, J., and Theisen, K. (1991). Rapid effects of mineralocorticoids on sodium-proton exchanger: Genomic or non-genomic pathway? Am. J. Physiol. 260:E719-E726.PubMedGoogle Scholar
  82. 82.
    Asher, C., Eren, R., Kahn, L., Yeger, O., and Garty, H. (1992). Expression of the amiloride-blockable Na+ channel by RNA from control versus aldosterone-stimulated tissue. J. Biol. Chem. 267:16061–16065.PubMedGoogle Scholar
  83. 83.
    Kemendy, A. E., Kleyman, T. R., and Eaton, D. C. (1992). Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am. J. Physiol. 263:C825-C837.PubMedGoogle Scholar
  84. 84.
    Sariban-Sohraby, S., Burg, M., Wiesmann, W. P., Chiang, P. K., and Johnson, J. P. (1984). Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action. Science 225:745–746.PubMedCrossRefGoogle Scholar
  85. 85.
    Harvey, B. J., Thomas, S. R., and Ehrenfeld, J. (1988). Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J. Gen. Physiol. 92:767–791.PubMedCrossRefGoogle Scholar
  86. 86.
    Palmer, L. G., and Frindt, G. (1987). Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am. J. Physiol. 253: F333-F339.PubMedGoogle Scholar
  87. 87.
    Harvey, B. J., and Ehrenfeld, J. (1988). Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J. Gen. Physiol. 92:793–810.PubMedCrossRefGoogle Scholar
  88. 88.
    Szerlip, H. M., Weisberg, L., Clayman, M., Neilson, E., Wade, J. B., and Cox, M. (1989). Aldosterone-induced proteins: Purification and localization of GP65/70. Am. J. Physiol. 256:C865–C872.PubMedGoogle Scholar
  89. 89.
    Rick, R., Spancken, G., and Dörge, A. (1988). Differential effects of aldosterone and ADH on intracellular electrolytes in the toad urinary bladder epithelium. J. Membr. Biol. 101:275–282.PubMedCrossRefGoogle Scholar
  90. 90.
    Pellanda, A. M., Gaeggler, H.-P., Horisberger, J.-D., and Rossier, B. C. (1992). Sodium-independent effect of aldosterone on initial rate of ouabain binding in A6 cells. Am. J. Physiol. 260:C899–C906.Google Scholar
  91. 91.
    Park, C.-S., and Edelman, I. S. (1984). Effect of aldosterone on abundance and phosphorylation kinetics of Na-K-ATPase of toad urinary bladder. Am. J. Physiol. 246:F509–F516.PubMedGoogle Scholar
  92. 92.
    Barlet-Bas, C, Khadouri, C., Marsy, S., and Doucet, A. (1988). Sodium-independent in vitro induction of Na+-K+ ATPase by aldosterone in renal target cells: Permissive effect of triiodothyronine. Proc. Nat. Acad. Sci. USA 85:1701–1711.CrossRefGoogle Scholar
  93. 93.
    Geering, K., Girardet, M., Bron, C, Kraehenbuhl, J.-P, and Rossier, B. C. (1982). Hormonal regulation of (Na+,K+)-ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3′-triiodo-1-thyro-nine. J. Biol. Chem. 257:10338–10343.PubMedGoogle Scholar
  94. 94.
    Barlet-Bas, C, Khadouri, C, Marsy, S., and Doucet, A. (1990). Enhanced intracellular sodium concentration in kidney cells recruits a latent pool of Na-K-ATPase whose size is modulated by corticosteroids. J. Biol. Chem. 265:7799–7809.PubMedGoogle Scholar
  95. 95.
    Blot-Chabaud, M., Wanstok, F., Bonvalet, J. P., and Farman, N. (1990). Cell sodium-induced recruitment of Na+-K+ ATPase pumps in rabbit cortical collecting tubules is aldosterone dependent. J. Biol. Chem. 265:11676–11681.PubMedGoogle Scholar
  96. 96.
    Turnheim, K., Hudson, R. L., and Schultz, S. G. (1987). Cell Na activities and transcellular Na absorption by descending colon from normal and Na-deprived rabbits. Pfluegers Arch. 410:279–283.CrossRefGoogle Scholar
  97. 97.
    Sansom, S. C, and O’Neil, R. G. (1985). Mineralocorticoid regulation of apical cell membrane Na+ and K+ transport of the cortical collecting duct. Am. J. Physiol. 248:F858-F868.PubMedGoogle Scholar
  98. 98.
    Schlatter, E., and Schafer, J. A. (1987). Electrophysiological studies in principal cells of rat cortical collecting tubules. Pfluegers Arch. 409:81–92.CrossRefGoogle Scholar
  99. 99.
    Pácha, J., Frindt, G., Antonian, L., Silver, R., and Palmer, L. G. (1993). Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:25–42.PubMedCrossRefGoogle Scholar
  100. 100.
    Asher, C, and Garty, H. (1988). Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms. Proc. Nat. Acad. Sci. USA 85:7413–7417.PubMedCrossRefGoogle Scholar
  101. 101.
    Renard, S., Viollet, N., Bassilana, F., Lazdunski, M., and Barbry, P. (1995). Localization and regulation by steroids of the α, ß and γ subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney. Pfluegers Arch. 430:299–307.CrossRefGoogle Scholar
  102. 102.
    Doucet, A., and Barlet-Bas, C. (1989). Involvement of Na+,K+-ATPase in antinatriuretic action of mineralocorticoids in mammalian kidney. Curr. Top. Membr. Transp. 34:185–208.Google Scholar
  103. 103.
    Katz, A. I. (1990). Corticosteroid regulation of NaK-ATPase along the mammalian nephron. Semin. Nephrol. 10:388–399.PubMedGoogle Scholar
  104. 104.
    Marver, D. (1992). Regulation of Na+,K+-ATPase by aldosterone. Semin. Nephrol. 12:56–61.PubMedGoogle Scholar
  105. 105.
    Wade, J. B., Stanton, B. A., Field, M. J., Kashgarian, M., and Giebisch, G. (1990). Morphological and physiological responses to aldosterone: Time course and sodium dependence. Am. J. Physiol. 259:F88-F94.PubMedGoogle Scholar
  106. 106.
    Verrey, F., Kraehenbuhl, J.-P, and Rossier, B. C. (1989). Aldosterone induces a rapid increase in the rate of Na,K-ATPase gene transcription in cultured kidney cells. Mol Endocrinol. 3:1369–1376.PubMedCrossRefGoogle Scholar
  107. 107.
    O’Neil, R. G., and Hayhurst, R. A. (1985). Sodium-dependent modulation of the renal Na-K-ATPase: Influence of mineralocorticoids on the cortical collecting duct. J. Membr. Biol. 85:169–179.PubMedCrossRefGoogle Scholar
  108. 108.
    Hayhurst, R. A., and O’Neil, R. G. (1988). Time-dependent actions of aldosterone and amiloride on Na+K+ ATPase of cortical collecting duct. Am. J. Physiol. 254:F689-F696.PubMedGoogle Scholar
  109. 109.
    Pressley, T. A. (1992). Ionic regulation of Na+,K+-ATPase expression. Semin. Nephrol. 12:67–71.PubMedGoogle Scholar
  110. 110.
    Wiener, H., Nielsen, J. M., Klaerke, D. A., and J0rgensen, P. L. (1993). Aldosterone and thyroid hormone modulation of α1-, ß1-mRNA and Na,K-pump sites in rabbit distal colon epithelium. Evidence for a novel mechanism of escape from the effect of hyper-aldosteronism. J. Membr. Biol. 133:203–211.PubMedGoogle Scholar
  111. 111.
    Skorecki, K. L. (1992). Molecular mechanisms of vasopressin action in the kidney. In Handbook of Physiology Section 8: Renal Physiology (E. E. Windhager, ed.), Oxford University Press, London, pp. 1185–1218.Google Scholar
  112. 112.
    Robertson, G. L. (1992). Regulation of vasopressin secretion. In The Kidney: Physiology and Pathophysiology. Second Edition (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 1596–1613.Google Scholar
  113. 113.
    Helman, S. I., Cox, T. C., and Van Driessche, W. (1983). Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J. Gen. Physiol. 82:201–220.PubMedCrossRefGoogle Scholar
  114. 114.
    Li, H.-Y., Palmer, L. G., Edelman, I. S., and Lindemann, B. (1982). The role of Na-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J. Membr. Biol. 64:77–89.PubMedCrossRefGoogle Scholar
  115. 115.
    Frindt, G., Silver, R. B., Windhager, E. E., and Palmer, L. G. (1995). Feedback regulation of Na channels in rat CCT. III. Response to cAMP. Am. J. Physiol. 268:F480-F489.PubMedGoogle Scholar
  116. 116.
    Oh, Y., Smith, P. R., Bradford, A. L., Keeton, D., and Benos, D. J. (1993). Regulation by phosphorylation of purified epithelial Na+ channels in planar lipid bilayers. Am. J. Physiol. 265:C85-C91.PubMedGoogle Scholar
  117. 117.
    Wade, J. B. (1986). Role of membrane fusion in hormonal regulation of epithelial transport. Annu. Rev. Physiol. 48:213–223.PubMedCrossRefGoogle Scholar
  118. 118.
    Lester, D. S., Sher, C. A., and Garty, H. (1988). Characterization of cAMP-induced activation of epithelial sodium channels. Am. J. Physiol. 254:C802-C808.PubMedGoogle Scholar
  119. 119.
    Garty, H., and Edelman, I. S. (1983). Amiloride-sensitive trypsiniza-tion of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J. Gen. Physiol. 81:785–803.PubMedCrossRefGoogle Scholar
  120. 120.
    Atlas, S. A., and Maack, T. (1992). Atrial natriuretic factor. In Handbook of Physiology Section 8: Renal Physiology (E. E. Windhager,eds.), Oxford University Press, London, pp. 1577–1673.Google Scholar
  121. 121.
    Ballerman, B. J., and Zeidel, M. L. (1992). Atrial natriuretic hormone. In The Kidney: Physiology and Pathophysiology. Second Edition(D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 1843–1884.Google Scholar
  122. 122.
    Light, D. B., Corbin, J. D., and Stanton, B. A. (1990). Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–339.PubMedCrossRefGoogle Scholar
  123. 123.
    Light, D. B., Schwiebert, E. M., Karlson, K. H., and Stanton, B. A. (1989). Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–385.PubMedCrossRefGoogle Scholar
  124. 124.
    Das, S., Garepapaghi, M., and Palmer, L. G. (1991). Stimulation by cGMP of apical Na channels and cation channels in toad urinary bladder. Am. J. Physiol. 260:C234-C241.PubMedGoogle Scholar
  125. 125.
    Siegel, B., and Civan, M. M. (1976). Aldosterone and insulin effects on driving force of Na+ pump in toad bladder. Am. J. Physiol. 230: 1603–1608.PubMedGoogle Scholar
  126. 126.
    Schoen, H. F., and Erlij, D. (1987). Insulin action on electrophysiological properties of apical and basolateral membrane of frog skin. Am. J. Physiol. 252:C411-C417.PubMedGoogle Scholar
  127. 127.
    Fidelman, M. L., May, J. M., Biber, T. U. L., and Watlington, C. O. (1982). Insulin stimulation of Na+ transport and glucose metabolism in cultured kidney cells. Am. J. Physiol. 242:C121-C123.PubMedGoogle Scholar
  128. 128.
    Blazer-Yost, B., Cox, M., and Furlanetto, R. (1989). Insulin and IGFI receptor-mediated Na+ transport in toad urinary bladders. Am. J. Physiol. 257:C612-C620.PubMedGoogle Scholar
  129. 129.
    Marunaka, Y, Hagiwara, N., and Tohda, H. (1993). Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6)*c251E.v4m. J. Physiol. 263: F392-F400.Google Scholar
  130. 130.
    Civan, M. M., Peterson-Yantorno, K., and O’Brien, T. G. (1988). Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway. Proc. Nat. Acad. Sci. USA 85:963–967.PubMedCrossRefGoogle Scholar
  131. 131.
    Ussing, H. H. (1965). Relationship between osmotic reactions and active sodium transport in frog skin epithelium. Acta Physiol. Scand. 63:141–155.PubMedCrossRefGoogle Scholar
  132. 132.
    Lipton, P. (1972). Effect of changes in osmolarity on sodium transport across toad bladder. Am. J. Physiol. 222:821–828.PubMedGoogle Scholar
  133. 133.
    Wills, N. K., Millinoff, L. P., and Crowe, W. E. (1991). Na+ channel activity in cultured renal (A6) epithelium: Regulation by solution osmolarity. J. Membr. Biol. 121:79–90.PubMedCrossRefGoogle Scholar
  134. 134.
    MacRobbie, E. A. C, and Ussing, H. H. (1961). Osmotic behavior of the epithelial cells of frog skin. Acta Physiol. Scand. 53:348–365.PubMedCrossRefGoogle Scholar
  135. 135.
    Strieter, J., Stephenson, J. L., Palmer, L. G., and Weinstein, A. W. (1990). Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium. J. Gen. Physiol. 96:319–344.PubMedCrossRefGoogle Scholar
  136. 136.
    Ussing, H. H. (1982). Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114:363–369.PubMedCrossRefGoogle Scholar
  137. 137.
    Strange, K. (1988). RVD in principal and intercalated cells of rabbit cortical collecting tubule. Am. J. Physiol. 255:C612-C621.PubMedGoogle Scholar
  138. 138.
    Hirsch, J., Leipzinger, J., Fröbe, U., and Schlatter, E. (1993). Regulation and possible physiological role of the Ca2+-dependent K+ channel of cortical collecting ducts of the rat. Pfluegers Arch. 422:492–498.CrossRefGoogle Scholar
  139. 139.
    Strange, L. (1989). Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J. Membr. Biol. 107:249–261.PubMedCrossRefGoogle Scholar
  140. 140.
    Palmer, L. G., Frindt, G., Silver, R. B., and Strieter, J. (1989). Feedback regulation of epithelial sodium channels. Curr. Top. Membr. Transp. 34:45–60.Google Scholar
  141. 141.
    Turnheim, K. (1991). Intrinsic regulation of apical sodium entry in epithelia. Physiol. Rev. 71:429–445.PubMedGoogle Scholar
  142. 142.
    Taylor, A., and Windhager, E. E. (1979). Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236:F505-F512.PubMedGoogle Scholar
  143. 143.
    Breyer, M. D. (1990). Regulation of water and salt transport in collecting duct through calcium-dependent signaling mechanisms. Am. J. Physiol. 260:F1-F11.Google Scholar
  144. 144.
    Silver, R. B., Frindt, G., Windhager, E. E., and Palmer, L. G. (1993). Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of the Na pump. Am. J. Physiol. 264:F557-F564.PubMedGoogle Scholar
  145. 145.
    Taniguchi, S., Marchetti, J., and Morel, F. (1989). Na/Ca exchangers in collecting cells of rat kidney. A single tubule fura-2 study. Plfuegers Arch. 415:191–197.CrossRefGoogle Scholar
  146. 146.
    Frindt, G., Palmer, L. G., and Windhager, E. E. (1996). Feedback inhibition of Na channels in rat CCT. IV. Mediation by activation of PKC. Am. J. Physiol., in press.Google Scholar
  147. 147.
    Schultz, S. G. (1981). Homeocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579-F590.PubMedGoogle Scholar
  148. 148.
    Schultz, S. G. (1989). Intracellular sodium activities and basolateral membrane potassium conductances of sodium-absorbing epithelial cells. Curr. Top. Membr. Transp. 34:21-44.Google Scholar
  149. 149.
    Chase, H. S. (1984). Does calcium couple and apical and basolateral membrane permeabilities in epithelia? Am. J. Physiol. 247:F869-F876.PubMedGoogle Scholar
  150. 150.
    Wong, S. M. E., DeBell, M. C, and Chase, H. S. J. (1990). Cell swelling increases intracellular free [Ca] in cultured toad bladder cells. Am. J. Physiol. 258:F292-F296.PubMedGoogle Scholar
  151. 151.
    Wang, W., Sackin, H., and Giebisch, G. (1993). Renal potassium channels and their regulation. Annu. Rev. Physiol. 54:81–96.CrossRefGoogle Scholar
  152. 152.
    Hurst, A. M., Beck, J., Laprade, R., and Lapointe, J.-Y. (1993). Na pump inhibition downregulates an ATP-sensitive K channel in rabbit proximal tubule. Am. J. Physiol. 264:F760-F764.PubMedGoogle Scholar
  153. 153.
    Tsuchiya, K., Wang, W., Giebisch, G., and Welling, P. A. (1992). ATP is a coupling modulator of parallel Na/K ATPase K channel activity in the renal proximal tubule. Proc. Nat. Acad. Sci. USA 89: 6418–6422.PubMedCrossRefGoogle Scholar
  154. 154.
    Helman, S. I., and Miller, D. A. (1971). In vitro techniques for avoiding edge damage in studies of the frog skin. Science 173: 146–148.PubMedCrossRefGoogle Scholar
  155. 155.
    Erlij, D. (1976). Basic electrical properties of tight epithelia determined with a simple method. Pfluegers Arch. 364:91–93.CrossRefGoogle Scholar
  156. 156.
    Larsen, E. H. (1991). Chloride transport by high resistance hetero-cellular epithelia. Physiol Rev. 71:235–283.PubMedGoogle Scholar
  157. 157.
    Ussing, H. H. (1949). The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol Scand. 17:1–37.PubMedCrossRefGoogle Scholar
  158. 158.
    Strieter, J., Stephenson, J. L., Giebisch, G., and Weinstein, A. M. (1992). A mathematical model of the rabbit cortical collecting tubule. Am. J. Physiol. 263:F1063-F1075.PubMedGoogle Scholar
  159. 159.
    Quinton, P. M. (1990). Cystic fibrosis: A disease in electrolyte transport. FASEB J. 4:2709–2717.PubMedGoogle Scholar
  160. 160.
    Zadunaisky, J. A., Candía, O. A., and Chiarandini, D. J. (1963). The origin of the short-circuit current in the isolated skin of the South American frog Leptodactyllus ocellatus. J. Gen. Physiol. 47:393–402.PubMedCrossRefGoogle Scholar
  161. 161.
    Levi, H, and Ussing, H. H. (1949). Resting potential and ion movement in the frog skin. Nature 164:928.PubMedCrossRefGoogle Scholar
  162. 162.
    Larsen, E. H., Willumsen, N. J., and Christoffersen, B. C. (1992). Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. J. Physiol. (London) 450: 203–216.PubMedGoogle Scholar
  163. 163.
    Steinmetz, P. R., and Kohn, O. F. (1992). Hydrogen ion transport in model epithelia. In The Kidney: Physiology and Pathophysiology (D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 2563–2580.Google Scholar
  164. 164.
    Al-Awqati, Q., and Beauwens, R. (1992). Cellular mechanisms of H+ and HCO- transport in tight urinary epithelia. In Handbook of Physiology Section 8: Renal Physiology (E. E. Windhager, ed.), Oxford University Press, London, pp. 323–350.Google Scholar
  165. 165.
    Ehrenfeld, J., Lacoste, I., and Harvey, B. J. (1989). The key role of the mitochondria-rich cell in Na+ and H+ transport across frog skin epithelium. Pfluegers Arch. 414:59–67.CrossRefGoogle Scholar
  166. 166.
    Ehrenfeld, J., and Garcia-Romeu, F. (1977). Active hydrogen excretion and sodium absorption through isolated frog skin. Am. J. Physiol. 233:F46-F54.PubMedGoogle Scholar
  167. 167.
    Palmer, L. G., Edelman, I. S., and Lindemann, B. (1980). Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism. J. Membr. Biol. 57:59–71.PubMedCrossRefGoogle Scholar
  168. 168.
    Nagel, W. (1976). The intracellular electrical potential profile of the frog skin epithelium. Pfluegers Arch. 365:135–143.CrossRefGoogle Scholar
  169. 169.
    Palmer, L. G. (1986). Apical membrane K conductance in the toad urinary bladder. J. Membr. Biol. 92:217–226.PubMedCrossRefGoogle Scholar
  170. 170.
    Van Driessche, W., Aelvoet, I., and Erlij, D. (1987). Oxytocin and cAMP stimulate monovalent cation movements through a Ca2+-sensitive, amiloride insensitive channel in the apical membrane of toad urinary bladder. Proc. Nat. Acad. Sci. USA 84:313–317.PubMedCrossRefGoogle Scholar
  171. 171.
    Van Driessche, W., and Zeiske, W. (1985). Ca2+-sensitive, spontaneously fluctuating cation channels in the apical membrane of the adult frog skin epithelium. Pfluegers Arch. 405:250–259.CrossRefGoogle Scholar
  172. 172.
    Das, S., and Palmer, L. G. (1989). Extracellular Ca2+ controls outward rectification by apical cation channels in toad urinary bladder: Patch-clamp and whole-bladder studies. J. Membr. Biol. 107:157–168.PubMedCrossRefGoogle Scholar
  173. 173.
    Schwartz, G. J., and Burg, M. B. (1978). Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235:F576-F585.Google Scholar
  174. 174.
    Tomita, K., Pisano, J. J., and Knepper, M. A. (1985). Control of sodium and potassium transport in the cortical collecting tubule of the rat. Effects of bradykinin, vasopressin, and deoxycorticosterone. J. Clin. Invest. 76:132–136.PubMedCrossRefGoogle Scholar
  175. 175.
    Koeppen, B. M., Biagi, B. A., and Giebisch, G. (1983). Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244:F35-F47.PubMedGoogle Scholar
  176. 176.
    Kubo, Y., Reuveny, E., Slesinger, P., Jan, Y. N., and Jan, L. Y (1993). Primary structure and functional expression of a rat G-pro-tein-coupled muscarinic potassium channel. Nature 364:802–806.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Lawrence G. Palmer
    • 1
  1. 1.Department of Physiology and BiophysicsCornell University Medical CollegeNew YorkUSA

Personalised recommendations