Advertisement

Abstract

Honey is a completely natural product. Although most commercially distributed honey has been subjected to some degree of physical processing, raw honey can be used straight from the comb as taken from the beehive. The distinction of honey as a pure natural product is maintained by food regulations worldwide: anything sold as honey has to have been produced by bees from the secretions of plants, and be free from any additives and contaminants. Nevertheless, the fraudulent practice of selling adulterated or simulated honey is widespread and has gone on since ancient times. To understand the challenge presented in detecting such fraud it is necessary to be aware of the complexity of honey, a natural product with a very varied nature resulting from the wide variability of its sources.

Keywords

Invert Sugar Manuka Honey Honeydew Honey Natural Honey Unifloral Honey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.J. and Smith, M.V. (1981) Seasonal pollen analysis of nectar from the hive and of extracted honey. J. Apicultural Res. 20(4), 234–48.Google Scholar
  2. Ali, A.T.M.M., Al-Humayyd, M.S. and Madan, B.R. (1990) Natural honey prevents indomethacin- and ethanol-induced gastric lesions in rats. Saudi Med. J. 11, 275–79.Google Scholar
  3. Al-Somai, N., Coley, K.E., Molan, P.C. et al. (1994) Susceptibility ofHelicobacter pylori to the antibacterial activity of manuka honey. J. Royal Soc. Med. 87(1), 9–12.Google Scholar
  4. Allen, K.L., Molan, P.C. and Reid, G.M. (1991) A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol. 43(12), 817–22.Google Scholar
  5. Baker, H.G. and Baker, I. (1977) Intraspecific constancy of floral nectar amino acid complements. Botanical Gazette 138(2), 183–191.Google Scholar
  6. Baker, H.G. and Baker, I. (1983) A brief historical review of the chemistry of floral nectar. In: The Biology of Nectaries (Eds B. Bentley and T. Elias). Columbia University Press, New York, pp. 126–52.Google Scholar
  7. Baker, H.G., Opler, P.A. and Baker, I. (1978) A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette 139, 322–32.Google Scholar
  8. Bicchi, C., Belliardo, F. and Frattini, C. (1983) Identification of the volatile components of some Piedmontese honeys. J. Apicultural Res. 22(2), 130–36.Google Scholar
  9. Blank, I., Fischer, K.-H. and Grosch, W. (1989) Intensive neutral odourants of linden honey. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 189, 426–33.Google Scholar
  10. Bogdanov, S. and Baumann, E. (1988) Bestimmung von Honigzuckern mit HPLC. Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 79, 198–206.Google Scholar
  11. Bonaga, G. and Giumanini, A.G. (1986) The volatile fraction of chestnut honey. J. Apicultural Res. 25(2), 113–20.Google Scholar
  12. Bosi, G. and Battaglini, M. (1978) Gas chromatographic analysis of free and protein amino acids in some unifloral honeys.J. Apicultural Res. 17(3), 152–66.Google Scholar
  13. Bricout, J. (1973) Control of authenticity of fruit juices by isotopic analysis. J. Assoc. Official Analytical Chem. 56(3), 739–42.Google Scholar
  14. Brookes, S.T., Barrie, A. and Davies, J.E. (1991) A rapid 13C/12C test for determination of corn syrups in honey. J. Assoc. Official Analytical Chem. 74(4), 627–29.Google Scholar
  15. Burroughs, L.F. and Otlet, R.L. (1986) The proline contents and stable carbon isotope ratio of genuine United Kingdom honey. J. Assoc. Public Analysis 24, 91–93.Google Scholar
  16. Chataway, H.D. (1932) Determination of moisture content in honey. Canad. J. Res. 6, 532–47.Google Scholar
  17. Church, J. (1954) Honey as a source of the anti-stiffness factor. Fed. Proc. Am. Physiol. Soc. 13(1), 26.Google Scholar
  18. Crane, E. (1975) The flowers honey comes from. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 3–76.Google Scholar
  19. Crane, E., Walker, W. and Day, R. (1984) Directory of Important World Honey Sources, International Bee Research Association, London.Google Scholar
  20. Cremer, E. and Riedmann, M. (1964) Identifizierung von gaschromatographisch getrennten Aromastoffen in Honigen. Zietschrift für Naturforschung B 19(1), 76–77.Google Scholar
  21. Cremer, E. and Riedmann, M. (1965) Gaschromatographisch Untersuchungen zur Frage des Honigaromas. Monatshefte für Chemie 96(2), 364–68.Google Scholar
  22. Croft, L. (1983) UK beekeeping under threat. In: The Sunday Times, London, 20 February, p. 22.Google Scholar
  23. Curti, R. and Riganti, V. (1966) Richerche sigli aminoacidi del miele. Rassegna Chimica 18(6), 278–82.Google Scholar
  24. Davies, A.M.C. (1975) Amino acid analysis of honeys from eleven countries. J. Apicultural Res. 14(1), 29–39.Google Scholar
  25. Davies, A.M.C. (1976) The application of amino acid analysis to the determination of geographical origin of honey. J. Food Technol. 11, 515–23.Google Scholar
  26. Dommee, B., Assouad, M.W. and Vadeyron, G. (1978) Natural selection and gynodioecy in Thymus vulgaris. Botanical J. Linnean Soc. 77, 17–28.Google Scholar
  27. Doner, L.W. (1977) The sugars of honey—a review. J. Sci. Food Agric. 28, 443–56.Google Scholar
  28. Doner, L.W. and White, J.W. (1977) Carbon-13/carbon-12 ratio is relatively uniform among honeys. Science 197 891–92.Google Scholar
  29. Doner, L.W., Kushnir, I. and White, J.W. (1979a) Assuring the quality of honey. Is it honey or is is syrup? Analyt. Chem. 51(2), 224A-232A.Google Scholar
  30. Doner, L.W., White, J.W. and Phillips, J.G. (1979b) Gas-liquid chromatographic test for honey adulteration by high fructose corn sirup.J. Assoc. Official Analytical Chem. 62(1), 186–89.Google Scholar
  31. Doner, L.W., Brause, A.R. and Petrus, D.R. (1992) δ18O measurements in water for detection of sugar beet-derived syrups in frozen concentrated orange juice: collaborative study. J. AOAC Internat. 75(6), 1107–11.Google Scholar
  32. Dörrscheidt, W. and Friedrich, K. (1962) Trennung von Aromastoffen des Honigs mit hilfe der Gas-Chromatographie. J. Chromatogr. 7(1), 13–18.Google Scholar
  33. Duisberg, H. and Hadorn, H. (1966) Weiche Anforderungen sind an Handelshonige zu stellen? Vorschläge auf Grund der statistichen Auswertung von ca. 1600 Honig-Analysen. Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 57(5), 386–407.Google Scholar
  34. Durkee, L.T. (1983) The ultrastructure of floral and extrafloral nectaries. In: The Biology of Nectaries (Eds B. Bentley and T. Elias). Columbia University Press, New York, pp. 1–29.Google Scholar
  35. Dustmann, J.H. (1971) Über die Katalaseaktivität in Bienenhonig aus der Tracht deer Heidekrautgewächse (Ericaceae). Zeitschrift für Lebensmittel-Untersuchung und-Forschung 145, 294–95.Google Scholar
  36. Dyce, E.J. (1975) Producing finely granulated or creamed honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 293–306.Google Scholar
  37. Editorial (1981) American Bee Journal 121(12), 860.Google Scholar
  38. Fasler, A. (1975) Honey standards legislation. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 329–54.Google Scholar
  39. Fossel, A. (1968) Pollenersatzmittel im mikroskopischen Befund von Frühtrachthonigen. Zeitschrift für Bienenforschung 9(5), 206–11.Google Scholar
  40. Gary, N.E. (1992) Activities and behaviour of honey bees. In: The Hive and the Honey Bee, revised edn. (Ed. J.M. Graham). Dadant & Sons, Hamilton, Illinois, pp. 269–372.Google Scholar
  41. Genier, G. (1966) Le pollen des Ericaceae dans le miels français. Annales de l’Abeille (Paris) 9(4), 271–321.Google Scholar
  42. Gilbert, J., Shepherd, M.J., Wallwork, M. A. et al. (1981) Determination of the geographical origin of honeys by multivariate analysis of gas chromatographic data on their free amino acid content. J. Apicultural Res . 20(2), 125–35.Google Scholar
  43. Graddon, A.D., Morison, J.D. and Smith, J.F. (1979) Volatile constituents of some unifloral Australian honeys. J. Agricultural Food Chem. 27(4), 832–37.Google Scholar
  44. Graham, J. (1979) Honey adulteration is not a new problem. Am. Bee J. 119(3), 228–29.Google Scholar
  45. Gray, R. (1952) Composition of honeydew excreted by pinapple mealybugs. Science 115, 129–33.Google Scholar
  46. Hagedorn, J.L. (1992) Differentiation of natural and synthetic benzaldehydes by 2H nuclear magnetic resonance. J. Agricultural Food Chem. 40(4), 634–37.Google Scholar
  47. Häusler, M. and Montag, A. (1989) Isolation, identification and quantitative determination of the isoprenoid (S)-(+)-dehydrovomifoliol in honey. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 189, 113–15.Google Scholar
  48. Haydak, M.H., Crane, E., Duisberg, H. et al. (1975) Biological properties of honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 258–66.Google Scholar
  49. Howells, V.W. (1969) Some reflections on the pollen analysis of honey. J. Assoc. Public Analysts 7, 88–93.Google Scholar
  50. Jacobs, M.B. (1955) Flavouring with honey.Am. Perfumer Essential Oil Rev. 66(1), 46–47.Google Scholar
  51. Kandil, A., El-Banby, M., Abdel-Wahed, K. et al. (1987) Curative properties of true floral and false non-floral honeys on induced gastric ulcer. J. Drug Res. (Cairo) 17, 103–106.Google Scholar
  52. Kirkwood, K.C., Mitchell, T.J. and Smith, D. (1960) An examination of the occurrence of honeydew in honey. Analyst, London 85(1011), 412–16.Google Scholar
  53. Kirkwood, K.C., Mitchell, T.J. and Ross, I.C. (1961) An examination of the occurrence of honeydew in honey. Part II. Analyst, London 86(1020), 164–65.Google Scholar
  54. Komamine, A. (1960) Amino acids in honey.Acta Chemica Fennica B33, 185–87.Google Scholar
  55. Kushnir, I. (1979) Sensitive thin-layer chromatographic detection of high-fructose corn syrup and other adulterants in honey. J. Assoc. Official Analytical Chem. 62(4), 917–20.Google Scholar
  56. Lipp, J., Ziegler, H. and Conrady, E. (1988) Detection of high fructose and other syrups in honey using high-pressure liquid chromatography. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 187(4), 334–38.Google Scholar
  57. Lothrop, R.E. (1932) Specific test for orange honey. Indust. Engineering Chem.—Analytical Edn. 4 395–96.Google Scholar
  58. Louveaux, J., Maurizio, A. and Vorwohl, G. (1978) Methods of melissopalynology. Bee World 59(4), 139–57.Google Scholar
  59. Low, N.H., Brisbane, T., Bigam, G. et al. (1988) Carbon-13 nuclear magnetic resonance for the qualitative and quantitative analysis of structurally similar disaccharides. J. Agric. Food Chem. 36(5), 953–57.Google Scholar
  60. Marek, M., Bacilek, J. and Jary, J. (1980) Polarographic determination of the adulteration of honey with invert sugar. J. Apicultural Res. 19(4), 255–60.Google Scholar
  61. Matheson, A. (1993) Honey research brings commercial success. Bee World 74(3), 145–6.Google Scholar
  62. Maurizio, A. (1962) From the raw material to the finished product: honey. Bee World 43, 66–81.Google Scholar
  63. Maurizio, A. (1973) The heather honeys of Europe.Bee World 54(3), 111–16.Google Scholar
  64. Maurizio, A. (1975a) How bees make honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 77–105.Google Scholar
  65. Maurizio, A. (1975b) Microscopy of honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 240–57.Google Scholar
  66. Maurizio, A. and Louveaux, J. (1964) Pollens des plantes melliferes d’Europe.Pollen et Spores 3, 219–346.Google Scholar
  67. Moar, N.T. (1985) Pollen analysis of New Zealand honey. NZJ. Agric. Res. 28, 39–70.Google Scholar
  68. Molan, P.C. (1992) The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 73(1), 5–28.Google Scholar
  69. Molan, P.C. (1992b) The antibacterial activity of honey. 2. Variation in the potency of the antibacterial activity. Bee World 73(2), 59–76.Google Scholar
  70. Moore, P.D. and Webb, J.A. (1978) An Illustrated Guide to Pollen Analysis, Hodder and Stoughton, London.Google Scholar
  71. Morton, I.D. and Sharples, E. (1959) Process of preparing a honey flavour. U.S. Patent No. 2 916 382.Google Scholar
  72. Nixon, H.L. and Ribbands, C.R. (1952) Food transmission within the honeybee community. Proc. Royal Soc. London, Series B 140, 43–50.Google Scholar
  73. Percival, M.S. (1961) Types of nectar in angiosperms. The New Phytologist 60, 235–81.Google Scholar
  74. Perez-Arquillué, C., Conchello, P., Arino, A. et al. (1994) Quality evaluation of Spanish rosemary (Rosmarinus officinalis) honey. Food Chem. 51(2), 207–10.Google Scholar
  75. Riley, D. and Young, A. (1966) World Vegetation, Cambridge University Press, London.Google Scholar
  76. Rinderer, T.E. and Baxter, J.R. (1980) Honeybee Apis mellifera hoarding of high-fructose corn syrup and cane sugar syrup. Am. Bee J. 120(12), 817–18.Google Scholar
  77. Rodgers, P.E.W. (1975) Honey quality control. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 314–25.Google Scholar
  78. Roßmann, A., Lüllmann, C. and Schmidt, H.-L. (1992) Massenspektometrische Kohlenstoff-und Wasserstoff-Isotopen-Verhältnismessung zur Authentizitätsprüfung bei Honigen. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 195(4), 307–11.Google Scholar
  79. Rubenstein, R.M. (1977) Honey adulteration testing.Am. Bee J. 117(12), 736–37.Google Scholar
  80. Sawyer, R.W. (1975) Melissopalynology in the determination of the geographical and floral origin of honey. J. Assoc. Public Analysts 13, 64–71.Google Scholar
  81. Sawyer, R.W. (1988) Honey Identification, Cardiff Academic Press, Cardiff, UK.Google Scholar
  82. Schade, J.E., Marsh, G.L. and Eckert, J.E. (1958) Diastase activity and hydroxymethylfurfural in honey and their usefulness in detecting heat alteration. Food Res. 23, 446–63.Google Scholar
  83. Schmidt, H.-L., Butzenlechner, M., Rossmann, A. et al. (1993) Inter- and intramolecular isotope correlations in organic compounds as a criterion for authenticity identification and origin assignment. Zeitschrift für Lebensmittel-Untersuchung und-Foreschung 196(2), 105–10.Google Scholar
  84. Shuel, R.W. (1992) The production of nectar and pollen. In: The Hive and the Honey Bee, revised edn. (Ed. J.M. Graham). Dadant & Sons, Hamilton, Illinois, pp. 401–36.Google Scholar
  85. Siddiqui, I.R. (1970) The sugars of honey.Adv. Carbohydrate Chem. Biochem. 25, 285–309.Google Scholar
  86. Sidorciuc, D. and Popescu, N. (1972) [Man-made honey]. Rumanian Patent No. 53959. Google Scholar
  87. Simpson, J., Moxley, E. and Greenwood, S.P. (1974) Can honey from sugar-fed bees be distinguished from natural honey by its flavour? Bee World 55(1), 10–14.Google Scholar
  88. Solov’eva and Bazarova, V. I. (1963) The content of free amino acids in some unifloral honeys [in Russian]. Voprosy Pitaniya 22, 69–70.Google Scholar
  89. Speer, K. and Montag, A. (1986) Verteilung freier Aminosären in Honigen unter besonderer Berücksichtigung der deutschen un der französischen Heidehonige. Deutsche Lebensmittel-Rundschau 82(8), 248–53.Google Scholar
  90. Sporns, P. (1981) High-pressure liquid chromatographic determination of phenol in honey. J. Assoc. Official Analytical Chem. 64(2), 337–39.Google Scholar
  91. Stockmarr, J. (1971) Tablets with spores used in absolute analysis. Pollen et Spores 13, 615–21.Google Scholar
  92. Swallow, K.W. and Low, N.H. (1994) Determination of honey authenticity by anionexchange liquid-chromatography. J. AOAC Internat. 77(3) 695–702.Google Scholar
  93. Takeba, K., Matsumoto, M., Shida, Y. et al. (1990) Determination of phenol in honey by liquid chromatography with amperometric detection. J. Assoc. Official Analytical Chem. 73(4), 602–04.Google Scholar
  94. Tan, S.T. (1989) A chemical investigation of some New Zealand honeys. DPhil. Thesis, University of Waikato, Hamilton, New Zealand.Google Scholar
  95. Tan, S.T., Holland, P.T., Wilkins, A.L. et al. (1988) Extractives from New Zealand honeys. 1. White clover, manuka and kanuka unifloral honeys. J. Agric. Food Chem. 36(3), 453–60.Google Scholar
  96. Tan, S.T., Wilkins, A.L., Holland, P.T. and McGhie, T.K. (1989a) Extractives from New Zealand unifloral honeys. 2. Degraded carotenoids and other substances from heather honey. J. Agric. Food Chem. 37(5), 1217–21.Google Scholar
  97. Tan, S.T., Wilkins, A.L., Holland, P.T. et al. (1990) Extractives from New Zealand honeys. 3. Unifloral thyme and willow honey. J. Agric. Food Chem. 38(9), 1833–38.Google Scholar
  98. Tan, S.T., Wilkins, A.L., Molan, P.C. et al. (1989b) A chemical approach to the determination of the floral sources of New Zealand honeys. J. Apicultural Res. 28(4), 212–22.Google Scholar
  99. Townsend, G.F. (1975) Processing and storing liquid honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 269–92.Google Scholar
  100. Trumpeter, J.N. (1981) Clarifying some of the myths and confusion about HFCS, sugar and honey. Am. Bee J. 121(12), 857–63.Google Scholar
  101. Verordmung über den Verkehn mit Lebensmittein (1971) Art. 217/3.Google Scholar
  102. Vorwohl, G. (1964) Die Beziehungen zwischen der elektrischen Leitfähigkeit der Honige und ihrer trachtmässigen Herkunft. Annales de l’Abeille 7(4), 301–9.Google Scholar
  103. Walsh, R.S. (1960) Anti-granulation method for honey packers. NZJ. Agric. 10(3), 229–31.Google Scholar
  104. White, J.W. (1966) Methyl anthranilatc content of citrus honey. J. Food Sci. 31(1), 102–04.Google Scholar
  105. White, J.W. (1975a) Composition of honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 157–206.Google Scholar
  106. White, J.W. (1975b) Physical characteristics of honey. In:Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 207–39.Google Scholar
  107. White, J.W. (1979a) Spectrophotometric method for hydroxymethylfurfural in honey. J. Assoc. Official Analytical Chem. 62(3), 509–14.Google Scholar
  108. White, J.W. (1979b) Methods for determining carbohydrates, hydroxymethylfurfural, and proline in honey: collaborative study. J. Assoc. Official Analytical Chem. 62(3), 515–26.Google Scholar
  109. White, J.W. (1980a) Hydroxmethylfurfural content of honey as an indicator of its adulteration with invert sugars. Bee World 61(1), 29–37.Google Scholar
  110. White, J.W. (1980b) Detection of honey adulteration by carbohydrate analysis. J. Assoc. Official Analytical Chem. 63(1), 11–18.Google Scholar
  111. White, J.W. (1980c) High-fructose corn syrup adulteration of honey: confirmatory testing required with certain isotope ratio values. J. Assoc. Official Analytical Chem. 63(5), 1168.Google Scholar
  112. White, J.W. (1981) The honey industry council fights adulteration. Am. Bee J. 121(6), 452–53.Google Scholar
  113. White, J.W. (1987) Wiley led the way: a century of federal honey research. J. Assoc. Official Analytical Chem. 70(2) 181–89.Google Scholar
  114. White, J.W. (1992a) Honey. In: The Hive and the Honey Bee, revised edn. (Ed. J.M. Graham), Dadant & Sons, Hamilton, Illinois, pp. 869–925.Google Scholar
  115. White, J.W. (1992b) Internal standard stable carbon isotope ratio method for determination of C-4 plant sugars in honey: collaborative study, and evaluation of improved protein preparation procedure. J. AOAC Internat. 75(3), 543–48.Google Scholar
  116. White J.W. (1994) The role of HMF and diastase assays in honey quality evaluation. Bee World 75(3), 104–17.Google Scholar
  117. White, J.W. and Doner, L.W. (1978a) The 13C/12C ratio in honey.J. Apicultural Res. 17(2), 94–99.Google Scholar
  118. White, J.W. and Doner, L.W. (1978b) Mass spectrometric detection of high-fructose corn sirup in honey by use of 13C/12C ratio: collaborative study. J. Assoc. Official Analytical Chem. 61(3), 746–50.Google Scholar
  119. White, J.W. and Rudyk, O.N. (1978a) The proline content of United States honeys.J. Apicultural Res. 17(2), 89–93.Google Scholar
  120. White, J.W. and Rudyj, O.N. (1978b) The protein content of honey. J. Apicultural Res. 17(4), 234–38.Google Scholar
  121. White, J.W. and Siciliano, J. (1980) Hydroxmethylfurfural and honey adulteration. J. Assoc. Official Analytical Chem. 63(1), 7–10.Google Scholar
  122. White, J.W. and Winters, K. (1989) Honey protein as internal standard for stable carbon isotope ratio detection of adulteration of honey.J. Assoc. Official Analytical Chem. 72(6), 907–11.Google Scholar
  123. White, J.W., Meloy, R.W., Probst, J.L.et al. (1986) Detection of beet sugar adulteration of honey. J. Assoc. Official Analytical Chem. 69(4), 652–54.Google Scholar
  124. White, J.W., Riethof, M.L. and Kushnir, I. (1961) Composition of honey, VI. The effect of storage of carbohydrates, and diastase content. J. Food Sci. 26(1) 63–71.Google Scholar
  125. White, J.W., Riethof, M.L., Subers, M.H. et al. (1962) Composition of American honeys. In: US Department of Agriculture Technical Bulletin 1261. Google Scholar
  126. White, J.W., Subers, M.H. and Schepartz, A.I. (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta 73, 57–70.Google Scholar
  127. White, J.W., Bryant, V.M. and Jones, J.G. (1991) Adulteration testing of Southwestern Desert honeys. Am. Bee J. 131(2), 123–26, 135.Google Scholar
  128. Wilkins, A.L., Lu, Y. and Molan, P.C. (1993a) Extractable organic substances from New Zealand unifloral manuka (Leptrospermum scoparium) honeys. J. Apicultural Res. 32(1), 3–9.Google Scholar
  129. Wilkins, A.L., Lu, Y. and Tan, S.T. (1993b) Extractives from New Zealand honeys. 4. Linalool derivatives and other components from nodding thistle (Carduus nutans) honey. J. Agric. Food Chem. 41(6), 873–78.Google Scholar
  130. Willix, D.J., Molan, P.C. and Harfoot, C.J. (1992) A comparison of the sensitivity of wound-infecting species of bacteria to the antibacterial activity of manuka honey and other honey. J. Appl. Bacteriol. 73, 388–94.Google Scholar
  131. Willson, R.B. (1975) World trading in honey. In: Honey: A Comprehensive Survey (Ed. E. Crane). Heinemann, London, pp. 355–77.Google Scholar
  132. Winkler, O. (1955) Beitrag zum Nachweis und zur Bestimmung von Oxymethylfufural in Honig und Kunsthonig. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 102(3), 161–67.Google Scholar
  133. Wootton, M., and Ryall, L. (1985) A comparison of Codex Alimentarius Commission and HPLC methods for 5-hydroxymethyl-2-furaldehyde determination in honey.J. Apicultural Res. 24(2), 120–24.Google Scholar
  134. Wootton, M., Edwards, R.A. and Faraji-Haremi, R. (1978) Effect of accelerated storage conditions on the chemical composition and properties of Australian honeys 3. Changes in volatile components. J. Apicultural Res. 17(3), 167–72.Google Scholar
  135. Wykes, G.R. (1952) An investigation of the sugars present in the nectar of flowers of various species. The New Phytologist 51, 210–15.Google Scholar
  136. Ziegler, H., Stichler, W. Maurizio, A. et al. (1978) Die Verwendung stabiler Isotope zur Charakterisierung von Honigen, ihrer Herkunft und ihrer Verfälschung. Apidologie 8(4), 337–47.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • P. C. Molan

There are no affiliations available

Personalised recommendations