Leukotriene Modifiers in the Treatment of Asthma

  • Jonathan Sadeh
  • Elliot Israel


Asthma is a chronic inflammatory disease associated with variable airflow obstruction. The mechanisms that lead to airflow obstruction in asthma are broncho-constriction, mucosal edema, increased secretion of mucus, and an inflammatory infiltrate that is rich in eosinophils. Leukotrienes (LTs) B4, C4, D4, and E4 have been shown experimentally to play a role in each of these inflammatory processes and mimic the pathologic changes seen in asthma [1,2]. LTC4, D4, and E4 have potent effects on airway smooth muscle, submucosal glands, epithelial cells, and blood vessels, where they cause contraction, mucus secretion, and changes in vascular permeability leading to edema. LTs are the most potent endogenous constrictors of airway smooth muscle that have been identified. Inhalation of LTD4 results in the same degree of airway obstruction as inhalation of solutions of histamine or metha-choline that are 1,000 to 10,000 times as concentrated [3]. LTB4 can recruit neutrophils to the airways, thereby further promoting inflammation.


Airway Smooth Muscle Respir Crit CysLT1 Receptor Improve Asthma Control Airway Smooth Muscle Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Panettieri RA, Tan EM, Ciocca V, et al.: Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity of cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 1998, 19:453–461.PubMedCrossRefGoogle Scholar
  2. 2.
    Mulder A, Gauvreau GM, Watson RM, O’Byrne PM: Effect of inhaled leukotriene D4 on airway eosinophilia and airway hyperresponsiveness in asthmatic subjects. Am J Respir Crit Care Med 1999, 159(5 Pt 1):1562–1567.PubMedCrossRefGoogle Scholar
  3. 3.
    Adelroth E, Morris MM, Hargreave FE, O’Byrne PM: Airway responsiveness to leukotrienes C4 and D4 and to methacholine in patients with asthma and normal controls. N Engl J Med 1986, 315:480–484.PubMedCrossRefGoogle Scholar
  4. 4.
    Drazen JM, O’Brien JB, Sparrow D, et al.: Recovery of leukotriene E4 from the urine of patients with airway obstruction. Am Rev Respir Dis 1992, 146:104–108.PubMedCrossRefGoogle Scholar
  5. 5.
    Taylor GW, Taylor I, Black P, et al.: Urinary leukotriene E4 after antigen challenge and in acute asthma and allergic rhinitis. Lancet 1989, 1:584–588.PubMedCrossRefGoogle Scholar
  6. 6.
    Yokomizo T, Izumi T, Chang K, et al.: A G-protein-coupled receptor for leukotriene B4 that mediates Chemotaxis. Nature 1997, 387(6633):620–624.PubMedCrossRefGoogle Scholar
  7. 7.
    Sarau HM, Ames RS, Chambers J, et al.: Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol Pharmacol 1999, 56(3):657–663.PubMedGoogle Scholar
  8. 8.
    Drazen JM, Israel E, O’Byrne PM: Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 1999, 340:197–206.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruijnzeel PL, Virchow JC, Jr., Rihs S, et al.: Lack of increased numbers of low-density eosinophils in the circulation of asthmatic individuals. Clin Exp Allergy 1993, 23(4):261–269.PubMedCrossRefGoogle Scholar
  10. 10.
    Wenzel SE, Larsen GL, Johnston K, et al.: Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 1990, 142:112–119.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith CM, Christie PE, Hawksworth RJ, et al.: Urinary leukotriene-E4 levels after allergen and exercise challenge in bronchial asthma. Am Rev Respir Dis 1991, 144:1411–1413.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumlin M, Dahlen B, Bjorck T, et al.: Urinary excretion of leukotriene E4 and 11-dehydro-thromboxane B2 in response to bronchial provocations with allergen, aspirin, leukotriene D4 and histamine in asthmatics. Am Rev Respir Dis 1992, 146:96–103.PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor IK, O’Shaughnessy KM, Fuller RW, Dollery CT: Effect of cysteinyl-leukotriene receptor antagonist ICI 204.219 on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 1991, 337:690–694.PubMedCrossRefGoogle Scholar
  14. 14.
    Diamant Z, Grootendorst DC, Veselic-Charvat M, et al.: The effect of montelukast (MK-0476), a cysteinyl leukotriene receptor antagonist, on allergen-induced airway responses and sputum cell counts in asthma. Clin Exp Allergy 1999, 29:42–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamilton AL, Watson RM, Wyile G, O’Byrne PM: Attenuation of early and late phase allergen-induced bronchoconstriction in asthmatic subjects by a 5-lipoxygenase activating protein antagonist, BAYx 1005. Thorax 1997, 52(4):348–354.PubMedCrossRefGoogle Scholar
  16. 16.
    Roquet A, Dahlen B, Kumlin M, et al.: Combined antagonism of leukotrienes and histamine produces predominant inhibition of allergen-induced early and late phase airway obstruction in asthmatics. Am J Respir Crit Care Med 1997, 155:1856–1863.PubMedCrossRefGoogle Scholar
  17. 17.
    Sestini P, Armetti L, Gambaro G, et al.: Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 1996, 153:572–575.PubMedCrossRefGoogle Scholar
  18. 18.
    Israel E, Fischer AR, Rosenberg MA, et al.: The pivotal role of 5-lipoxygenase products in the reaction of aspirin-sensitive asthmatics to aspirin. Am Rev Respir Dis 1993, 148:1447–1451.PubMedCrossRefGoogle Scholar
  19. 19.
    Dahlen SE, Malmstrom K, Nizankowska E, et al.: Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 2002, 165(1):9–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Dahlen B, Nizankowska E, Szczeklik A, et al.: Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998, 157:1187–1194.PubMedCrossRefGoogle Scholar
  21. 21.
    Pliss LB, Ingenito EP, Ingram RH, Jr., Pichurko B: Assessment of bronchoalveolar cell and mediator response to isocapnic hyperpnea in asthma. Am Rev Respir Dis 1990, 142:73–78.PubMedCrossRefGoogle Scholar
  22. 22.
    Leff JA, Busse WW, Pearlman D, et al.: Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 1998, 339:147–152.PubMedCrossRefGoogle Scholar
  23. 23.
    Israel E, Dermarkarian R, Rosenberg M, et al.: The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N Engl J Med 1990, 323:1740–1744.PubMedCrossRefGoogle Scholar
  24. 24.
    Meltzer SS, Hasday JD, Cohn J, Bleecker ER: Inhibition of exercise-induced bronchospasm by zileuton: a 5-lipoxygenase inhibitor. Am J Respir Crit Care Med 1996, 153:931–935.PubMedCrossRefGoogle Scholar
  25. 25.
    Dessanges JF, Prefaut C, Taytard A, et al.: The effect of zafirlukast on repetitive exercise-induced bronchoconstriction: the possible role of leukotrienes in exercise-induced refractoriness. J Allergy Clin Immunol 1999, 104(6):1155–1161.PubMedCrossRefGoogle Scholar
  26. 26.
    Edelman JM, Turpin JA, Bronsky EA, et al.: Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. Ann Intern Med 2000, 132:97–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Finnerty JP, Wood-Baker R, Thomson H, Holgate ST: Role of leukotrienes in exercise-induced asthma. Inhibitory effect of ICI 204219, a potent leukotriene D4 receptor antagonist. Am Rev Respir Dis 1992, 145:746–749.PubMedCrossRefGoogle Scholar
  28. 28.
    Israel E, Rubin P, Kemp J, et al.: The effect of inhibition of 5-lipoxygenase by zileuton in mild to moderate asthma. Ann Intern Med 1993, 119:1059–1066.PubMedCrossRefGoogle Scholar
  29. 29.
    Reiss TF, Altman LC, Chervinsky P, et al.: Effects of montelukast (MK-0476), a new potent cysteinyl leukotriene (LTD4) receptor antagonist, in patients with chronic asthma. J Allergy Clin Immunol 1996, 98:528–534.PubMedCrossRefGoogle Scholar
  30. 30.
    Spector SL, Smith LJ, Glass M: Accolate Asthma Trialists Group. Effects of 6 weeks of therapy with oral doses of ICI 204,219, a leukotriene D4 receptor antagonist, in subjects with bronchial asthma. Am J Respir Crit Care Med 1994, 150:618–623.PubMedCrossRefGoogle Scholar
  31. 31.
    Malmstrom K, Rodriguez-Gomez G, Guerra J, et al.: Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma. Ann Intern Med 1999, 130:487–495.PubMedCrossRefGoogle Scholar
  32. 32.
    Reiss TF, Sorkness CA, Strieker W, et al.: Effects of montelukast (MK-0476), a potent cysteinyl leukotriene receptor antagonist, on bronchodilation in asthmatic subjects treated with and without inhaled corticosteroids. Thorax 1997, 52:45–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Lofdahl CG, Reiss TF, Leff JA, et al.: Randomised, placebo controlled trial of effect of a leukotriene receptor antagonist, montelukast, on tapering inhaled corticosteroids in asthmatic patients. BMJ 1999, 319:87–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Laviolette M, Malmstrom K, Lu S, et al.: Montelukast added to inhaled beclomethasone in treatment of asthma. Am J Respir Crit Care Med 1999, 160:1862–1868.PubMedCrossRefGoogle Scholar
  35. 35.
    Virchow JC, Jr., Prasse A, Naya I, et al.: Zafirlukast improves asthma control in patients receiving high-dose inhaled corticosteroids. Am J Respir Crit Care Med 2000, 162:578–585.PubMedCrossRefGoogle Scholar
  36. 36.
    Tamaoki J, Kondo M, Sakai N, et al.: Leukotriene antagonist prevents exacerbation of asthma during reduction of high-dose inhaled corticosteroid. Am J Respir Crit Care Med 1997, 155:1235–1240.PubMedCrossRefGoogle Scholar
  37. 37.
    Busse W, Nelson H, Wolfe J, et al.: Comparison of inhaled salmeterol and oral zafirlukast in patients with asthma. J Allergy Clin Immunol 1999, 103:1075–1080.PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson HS, Busse WW, Kerwin E, et al.: Fluticasone propionate/salmeterol combination provides more effective asthma control than low-dose inhaled corticosteroid plus montelukast. J Allergy Clin Immunol 2000, 106(6):1088–1095.PubMedCrossRefGoogle Scholar
  39. 39.
    Fish JE, Israel E, Murray JJ, et al.: Salmeterol powder provides significantly better benefit than montelukast in asthmatic patients receiving concomitant inhaled corticosteroid therapy. Chest 2001, 120(2):423–430.PubMedCrossRefGoogle Scholar
  40. 40.
    Reinus JF, Persky S, Burkiewicz JS, et al.: Severe liver injury after treatment with the leukotriene receptor antagonist zafirlukast. Ann Intern Med 2000, 133(12):964–968.PubMedCrossRefGoogle Scholar
  41. 41.
    Wechsler ME, Garpestad E, Flier SR, et al.: Pulmonary infiltrates, eosinophilia, and cardiomyopathy following corticosteroid withdrawal in patients with asthma receiving zafirlukast. JAMA 1998, 279:455–457.PubMedCrossRefGoogle Scholar
  42. 42.
    Tuggey JM, Hosker H: Churg-Strauss syndrome associated with montelukast therapy. Thorax 2000, 55:805–806.PubMedCrossRefGoogle Scholar
  43. 43.
    Wechsler ME, Finn D, Gunawardena D, et al.: Churg-Strauss syndrome in patients receiving montelukast as treatment for asthma. Chest 2000, 117:708–713.PubMedCrossRefGoogle Scholar
  44. 44.
    Szefler SJ, Martin RJ, King TS, et al.: Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 2002, 109(3):410–418.PubMedCrossRefGoogle Scholar
  45. 45.
    Drazen JM, Yandava CN, Dube L, et al.: Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat Genet 1999, 22:168–170.PubMedCrossRefGoogle Scholar
  46. 46.
    Sampson AP, Siddiqui S, Buchanan D, et al.: Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 2000, 55(Suppl 2):S28-S31.PubMedCrossRefGoogle Scholar
  47. 47.
    Reiss TF, Chervinsky P, Dockhorn RJ, et al.: Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma. Arch Intern Med 1998, 158:1213–1220.PubMedCrossRefGoogle Scholar
  48. 48.
    Drazen JM, Israel E: Should antileukotriene therapies be used instead of inhaled corticosteroids in asthma? Yes. Am J Respir Crit Care Med 1998, 158:1697–1698.PubMedCrossRefGoogle Scholar
  49. 49.
    Dahlen B, Margolskee DJ, Zetterstrom O, Dahlen SE: Effect of the leukotriene receptor antagonist MK-0679 on baseline pulmonary function in aspirin sensitive asthmatic subjects. Thorax 1993, 48:1205–1210.PubMedCrossRefGoogle Scholar
  50. 50.
    National Heart, Lung, and Blood Institute, National Asthma Education and Prevention Program: Expert Panel Report 2: Guidelines for the Diagnosis and Management of Asthma. Bethesda, MD: National Institutes of Health, Pub. No. 97-4051; 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jonathan Sadeh
  • Elliot Israel

There are no affiliations available

Personalised recommendations