Skip to main content

Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes

  • Chapter
Book cover Immunotoxins

Part of the book series: Cancer Treatment and Research ((CTAR,volume 37))

Abstract

There is a group of cytotoxic proteins acting on eukaryotic ribosomes, including those from plants (ricin, abrin, and modeccin), fungi (α-sarcin), and bacteria (Shiga toxin). As discussed above by Olsnes, these toxins have been known to catalytically and irreversibly inactivate 60S ribosomal subunits affecting the activities of the peptide elongation reaction [also refer to 1,2]. However, the molecular mechanisms of their action have not been elucidated except for the case of α-sarcin, which has been known to hydrolyze a single phosphodiester bond between G-4325 and A-4326 in an evolutionarily conserved region of 28S rRNA [3–5]. Ricin and the other related toxins, e.g., abrin, modeccin, and Shiga toxin, consist of two peptide chains, A and B, linked together by disulfide bonds, while α-sarcin is a single peptide [6]. The B chain binds the toxins to receptors on the cell surface, and the A chain enters the cytoplasm and inactivates the 60S ribosomal subunits. Irrespective of the structural differences, the mode of action of ricin and the related toxins is known to be identical with that of α-sarcin in the following aspects: 1) They affect EF-1 and EF-2 associated functions of 60S subunits, and 2) they do not require energy or any cofactors. These lines of evidence suggested to us that like α-sarcin they also act on rRNA rather than on ribosomal proteins in 60S ribosomal subunits. The possibility that the toxins are endonucleases was once ruled out in 1976 by Mitchell et al. [7], who reported that ricin does not change the sizes of any rRNA species of L-cell polysomes in vitro, but more recently it was suggested by Obrig et al. [8], who demonstrated that the toxins, ricin, phytolaccin, and Shiga toxin are able to hydrolyze naked 5S and 5.8S rRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H., and Waring, M.J. (1981) The Molecular Basis of Antibiotic Action, 2nd ed., John Willey & Sons, New York, pp 402–529.

    Google Scholar 

  2. Reisbig, R., Olsnes, S., and Eiklid, K. (1981) The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60s ribosomal subunit. J. Biol. Chem., 256, 8739–8744.

    PubMed  CAS  Google Scholar 

  3. Endo, Y., and Wool, I.G. (1982) The site of action of alpha-sarcin on eukaryotic ribosomes. The sequence at the alpha-sarcin cleavage site in 28S ribosomal ribonucleic acid. J. Biol. Chem., 257, 9054–9060.

    PubMed  CAS  Google Scholar 

  4. Endo, Y., Huber, P.W., and Wool, I.G. (1983) The ribonuclease activity of the cytotoxin alpha-sarcin with ribosomes and ribonucleic acids as substrates. J. Biol. Chem., 258, 2662–2667.

    PubMed  CAS  Google Scholar 

  5. Chan, Y.-L., Endo, Y., and Wool, I.G. (1983) The sequence of the nucleotides at the alphasarcin cleavage site in rat 28S ribosomal ribonucleic acid. J. Biol. Chem., 258, 12768–12770.

    PubMed  CAS  Google Scholar 

  6. Sacco, G., Drickamer, K., and Wool, I.G. (1983) The primary structure of the cytotoxin alpha-larcin. J. Biol. Chem., 258, 5811–5818.

    PubMed  CAS  Google Scholar 

  7. Mitchell, S.J., Hedblom, M., Cawley, D., and Houston, L.L. (1976) Ricin does not act as an endonuclease on L cell polysomar RNA. Biochem. Biophys. Res. Commun., 68, 763–769.

    Article  PubMed  CAS  Google Scholar 

  8. Obrig, T.G., Moran, T.P., and Colinas, R.J. (1985) Ribonuclease activity associated with the 60S ribosome-inactivating proteins ricin A, phytolaccin and Shiga toxin. Biochem. Biophys. Res. Commun., 130, 879–884.

    Article  PubMed  CAS  Google Scholar 

  9. Endo, Y., and Tsurugi, K. (1986) Mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. Nucleic Acids Research Symposium Series, No. 17, IRL Press, Oxford, pp 187–190.

    Google Scholar 

  10. Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) Mechanism of action of the toxic lectin ricin on eukaryotic. The site and characteristics of the modification in 28S rRNA caused by the toxin. J. Biol. Chem., 262, 5908–5912.

    PubMed  CAS  Google Scholar 

  11. Endo, Y., and Tsurugi, K. (1987) Mechanism of action of the toxic lectin ricin on eukaryotic. RNA-N-glycosidase activity of ricin A-chain. J. Biol. Chem., 262, 8128–8130.

    PubMed  CAS  Google Scholar 

  12. Choi, Y.C. (1985) Structural organization of ribosomal RNAs from Novikoff hepatoma. II. Characterization of possible binding sites of 5S rRNA and 5.8S rRNA to 28S rRNA. J. Biol. Chem., 260, 12773–12779.

    PubMed  CAS  Google Scholar 

  13. Chan, Y.-L., Olivera, J., and Wool, I.G. (1983) The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucl. Acids Res., 11, 7819–7831.

    Article  PubMed  CAS  Google Scholar 

  14. Uchida, T., and Egami, F. (1971) The Enzymes, P.D. Boyer, ed. Vol. 4, pp 205–250.

    Google Scholar 

  15. Kochetov, N.K., and Budovskii, E.I. Organic Chemistry of Nucleic Acids. Plenum Press, New York, pp 269–618.

    Google Scholar 

  16. Peattie, D.A. (1979) Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci. USA, 76, 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  17. Olsnes, S., Fernandez-Puentes, C., Carrasco, L., and Vazquez, D. (1975) Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. Eur. J. Biochem., 60, 281–288.

    Article  PubMed  CAS  Google Scholar 

  18. Magni, G., Fioretti, E., Ipata, P.L., and Natalini, P. (1975) Bakers’ yeast uridine nucleosidase. Purification, composition, and physical and enzymatic properties. J. Biol. Chem., 250, 9–13.

    PubMed  CAS  Google Scholar 

  19. Kaplan, N.O., Colowick, S.P., and Nason, A. (1951) Neurospora diphosphopyridine nucleotidase. J. Biol. Chem., 191, 473–483.

    PubMed  CAS  Google Scholar 

  20. Duerre, J.A. (1962) A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5’-methylthioadenosine. J. Biol. Chem., 237, 3737–3741.

    CAS  Google Scholar 

  21. Lindahl, T. (1976) New class of enzymes acting on damaged DNA. Nature, 259, 64–66.

    Article  PubMed  CAS  Google Scholar 

  22. Lindahl, T., Ljungquist, S., Siegert, W., Nybery, B., and Speren, B. (1977) DNA Nglycosidses: Properties of uracil-DNA glycosidase from Escherichia coll. J. Biol. Chem., 252, 3286–3294.

    CAS  Google Scholar 

  23. Brosius, J., Dull, T.J., and Noller, H.F. (1980) Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA, 77, 201–204.

    Article  CAS  Google Scholar 

  24. Veldman, G.M., Klootwijk, J., de Regt, V.C., Planta, R.J., Branlant, C., and Ebel, J.-P. (1981) The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res., 9, 6935–6952.

    Article  PubMed  CAS  Google Scholar 

  25. Georgiev, O.I., Nikolaev, N., Hadjiolov, A.A., Skraybin, K.G., Zakharyev, V.M., and Bayev, A.A. (1981) The structure of the yeast ribosomal RNA genes. 4. Complete sequence of the 25s rRNA gene from Saccharomyces cerevisae. Nucleic Acids Res., 9, 6953–6958.

    Article  PubMed  CAS  Google Scholar 

  26. Clark, C.G., Tague, B.W., Ware, V.C., and Gerbi, S.A. (1984) Xenopus laevis 28S ribosomal RNA: A secondary structure model and its evolutionary and functional implications. Nucl. Acids Res., 12, 6197–6220.

    Article  PubMed  CAS  Google Scholar 

  27. Gasperi-Campani, A., Barbieri, L., Morelli, P., and Stirpe, F. (1980) Seed extracts inhibiting protein synthesis in vitro. Biochem. J., 186, 439–441.

    PubMed  CAS  Google Scholar 

  28. Roberts, W.K., and Stewart, T.S. (1979) Purification and properties of a translation inhibitor from wheat germ. Biochemistry, 18, 2615–2621.

    Article  PubMed  CAS  Google Scholar 

  29. Endo, Y. et. al. (1987), Eur. J. Biochem., in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Endo, Y. (1988). Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes. In: Frankel, A.E. (eds) Immunotoxins. Cancer Treatment and Research, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1083-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1083-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8419-2

  • Online ISBN: 978-1-4613-1083-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics