Immunotoxins pp 39-73

Part of the Cancer Treatment and Research book series (CTAR, volume 37) | Cite as

How protein toxins enter and kill cells

  • Sjur Olsnes
  • Kirsten Sandvig

Abstract

The toxins described in this chapter (Table 1) are produced by certain pathogenic bacteria and certain poisonous plants. So far our knowledge is very limited as to the reason why these organisms produce toxins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pappenheimer, A.M., Jr. (1977) Diphtheria toxin. Ann. Rev. Biochem., 46, 69–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Pappenheimer, A.M., Jr. (1982) Diphtheria: Studies on the biology of an infectious disease. Harvey Lect. Series, 76, 45–73.Google Scholar
  3. 3.
    Pappenheimer, A.M., Jr., and Murphy, J.R. (1983) Studies on the molecular epidemiology of diphtheria. Lancet, II, 923–926.CrossRefGoogle Scholar
  4. 4.
    Saelinger, C.B., Morris, R.E., and Foertsch, G. (1985) Trafficking of Pseudomonas exotoxin A in mammalian cells. Eur. J. Clin. Microbiol., 4, 170–174.PubMedCrossRefGoogle Scholar
  5. 5.
    Blackwood, L.L., Stone, R.M., Iglewski, B.H., and Pennington, J.E. (1983) Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect. Immun., 39, 198–201.PubMedGoogle Scholar
  6. 6.
    Keusch, G.T., and Jacewicz, M. (1975) The pathogenesis of Shigella diarrhea. V. Relationships of Shiga enterotoxin, neurotoxin, and cytotoxin. J. Infect. Dis., 131, (Suppl.), S33 - S39.PubMedCrossRefGoogle Scholar
  7. 7.
    van Heyningen, W.E. (1971) The exotoxin of Shigella dysenteriae. In: Microbiological toxins, vol. II. A.S. Kadis, T.C. Montie, and S.J. Ajl, eds. Academic Press, New York, pp 255–269.Google Scholar
  8. 8.
    Rout, W.R., Formal, S.B., Giannella, R.A., and Dammin, G.J. (1975) Pathophysiology of shigella diarrhea in the rhesus monkey: Intestinal transport, morphological, and bacteriological studies. Gastroenterology, 68, 270–278.PubMedGoogle Scholar
  9. 9.
    Eiklid, K., and Olsnes, S. (1983) Animal toxicity of Shigella dysenteriae cytotoxin. Evidence that the neurotoxic, enterotoxic and cytotoxic activities are due to one toxin. J. Immunol., 130, 380–384.PubMedGoogle Scholar
  10. 10.
    Wiley, R.G., Donohue-Rolfe, A., and Keusch, G.T. (1985) Axonally transported shigella cytotoxin is neurotoxic. J. Neuropathol. Exp. Neurol., 44, 496–506.PubMedCrossRefGoogle Scholar
  11. 11.
    Strockbine, N.A., Marques, L.R.M., Holmes, R.K., and O’Brien, A.D. (1985) Characterization of monoclonal antibodies against Shiga-like toxin from Escherichia coli. Infect. Immun., 50, 695–700.Google Scholar
  12. 12.
    Strockbine, N.A., Marques, L.R., Newland, J.W., Smith, H.W., Holmes, R.K., and O’Brien, A.D. (1986) Two toxin-converting phages from Escherichia coli 0157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun., 53, 135–140.PubMedGoogle Scholar
  13. 13.
    Karmali, M.A., Steele, B.T., Petric, M., and Lim, C. (1983) Sporadic cases of hemolyticuremic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet, I, 619–620.Google Scholar
  14. 14.
    Rose, P.E., Armour, J.A., Williams, C.E., and Hill, F.G.H. (1985) Verotoxin and neuraminidase induced platelet aggregating activity in plasma: Their possible role in the pathogensis of the haemolytic uraemic syndrome. J. Clin. Pathol., 38, 438–441.PubMedCrossRefGoogle Scholar
  15. 15.
    Olsnes, S., and Pihl, A. (1976) Abrin, ricin and their associated agglutinins. In: Receptors and Recognition. Series B: The Specificity and Action of Animal, Bacterial and Plant toxins. P. Cuatrecases, ed. Chapman and Hall, London, pp 129–173.Google Scholar
  16. 16.
    Olsnes, S., and Sandvig, K. (1983) Entry of toxic proteins into cells. In: Receptor-mediated Endocytosis, Receptor and Recognition, series B, Vol. 15. P. Cuatrecasas, and T.F. Roth, eds. Chapman and Hall, London, pp 187–236.Google Scholar
  17. 17.
    Rauber, A., and Heard, J. (1985) Castor bean toxicity reexamined: A new perspective. Vet. Hum. Toxicol, 27, 498-PubMedGoogle Scholar
  18. 18.
    Foxwell, B.M., Detre, S.I., Donovan, T.A., and Thorpe, P.E. (1985) The use of anti-ricin antibodies to protect mice intoxicated with ricin. Toxicology, 34, 79–88.PubMedCrossRefGoogle Scholar
  19. 19.
    Godai, A., Fodstad, O., Ingebrigtsen, K., and Pihl, A. (1984) Pharmacological studies of ricin in mice and humans. Can. Chem. Pharm., 13, 157–163.CrossRefGoogle Scholar
  20. 20.
    Refsnes, K., Haylett, T., Sandvig, K., and Olsnes, S. (1977) Modeccin — a plant toxin inhibiting protein synthesis. Biochem. Biophys. Res. Commun., 79, 1176–1183.PubMedCrossRefGoogle Scholar
  21. 21.
    Stirpe, F., Gasperi-Campani, A., Barbieri, L., Lorenzoni, E., Montanaro, L., Sperti, S., and Bonetti, E. (1978) Inhibition of protein synthesis by modeccin, the toxin from Modecca digitata. FEBS Lett., 85, 65–67.CrossRefGoogle Scholar
  22. 22.
    Barbieri, L, Falasca, A.I., and Stirpe, F. (1984) Volkensin, the toxin of Adenia volkensii (kilyambiti plant). FEBS Lett., 171, 277–279.CrossRefGoogle Scholar
  23. 23.
    Lord, J.M. (1985) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm form castor bean. Eur. J. Biochem., 146, 403–409.PubMedCrossRefGoogle Scholar
  24. 24.
    Ready, M., Wilson, K., Piatak, M., and Robertus, J.D. (1984) Ricin-like plant toxins and evolutionary related to single-chain ribosome-inhibiting proteins from Phytolacca. J. Biol. Chem., 259, 15252–15256.Google Scholar
  25. 25.
    Brown, J.C., and Hunt, R.C. (1978) Lectins. Int. Rev. Cytol., 52, 277–349.PubMedCrossRefGoogle Scholar
  26. 26.
    Harley, S.M., and Lord, J.M. (1985) In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Science, 41, 111–116.CrossRefGoogle Scholar
  27. 27.
    Halting, K.C., Hailing, A., Murray, E.E., Ladin, B.F., Houston, L.L., and Weaver, R.F. (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucl. Acids Res., 13, 8019–8033.CrossRefGoogle Scholar
  28. 28.
    Stirpe, F., and Barbieri, L. (1986) Ribosome-inactivating proteins up to date. FEBS Lett., 195, 1–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Jiménez, A., and Vazquez, D. (1985) Plant and fungal protein and glycoprotein toxins inhibiting eukaryote protein synthesis. Ann. Rev. Microbiol., 39, 649–672.CrossRefGoogle Scholar
  30. 30.
    Ready, M.P., Brown, D.T., and Robertus, J.D. (1986) Extra-cellular localization of pokeweed antiviral protein. Proc. Natl. Acad. Sci., USA, 83, 5053–5056.PubMedCrossRefGoogle Scholar
  31. 31.
    Xuejun, Z., and Jiahuai, W. (1986) Homology of trichosanthin and ricin A chain. Nature, 321, 477–478.CrossRefGoogle Scholar
  32. 32.
    Ussery, M.A., Irvin, J.D., and Hardesty, B. (1977) Inhibition of poliovirus replication by a plant antiviral peptide. Ann. N.Y. Acad. Sci., 284, 431–440.PubMedCrossRefGoogle Scholar
  33. 33.
    Stevens, W.A., Spurdon, C., Onyon, L.J., and Stirpe, F., (1981) Effect of inhibitors of protein synthesis from plants on tobacco mosaic virus infection. Experientia, 37, 257–258.CrossRefGoogle Scholar
  34. 34.
    Stirpe, F., Williams, D.G., Onyon, L.J., and Legg, R.F., (1981) Dianthins, ribosome-damaging proteins with antiviral properties from Dianthus carophyllus L. Biochem. J., 195, 399–405.PubMedGoogle Scholar
  35. 35.
    Collier, R.J., and Robertus, J. The preceding chapters in this volume.Google Scholar
  36. 36.
    Olsnes, S., and Sandvig, K. (1985) Entry of polypeptide toxins into animal cells. In: Receptor-mediated Endocytosis. I. Pastan and M.C. Willingham, eds. Plenum Publ. Corp., pp 195–234.Google Scholar
  37. 37.
    Olsnes, S., and Pihl, A. (1982) Toxic lectins and related proteins. In: Molecular Action of Toxins and Viruses. P. Cohen and S. van Heyningen, eds. Elsevier, Amsterdam, pp 51–105.Google Scholar
  38. 38.
    Uchida, T. (1982) Diphtheria toxin: Biological activity. In: Molecular Action of Toxins and Viruses. P. Cohen and S. van Heyningen, eds. Elsevier, Amsterdam, pp 1–31.Google Scholar
  39. 39.
    Donohue-Rolfe, A., Keusch, G.T., Edson, C., Thorley-Lawson, D., and Jacewicz, M. (1984) Pathogenesis of shigella diarrhea. IX. Simplified high yield purification of shigella toxin and characterization of subunit composition and function by the use of subunit-specific monoclonal and polyclonal antibodies. J. Exp. Med., 160, 1767–1781.PubMedCrossRefGoogle Scholar
  40. 40.
    Boguet, P., Silverman, M.S., Pappenheimer, A.M., Jr., and Vernon, W.B. (1976) Binding of Triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc. Natl. Acad. Sci. USA, 73, 4449–4453.CrossRefGoogle Scholar
  41. 41.
    Lambotte, P., Falmagne, P., Capiau, B., Zanen, J., Ruysschaert, J.-M., and Dirkx, J. (1980) Primary structure of diphtheria toxin fragment B: Structural similarities with lipid-binding domains. J. Cell Biol., 87, 837–840.PubMedCrossRefGoogle Scholar
  42. 42.
    Sandvig, K., and Olsnes, S. (1981) Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule. J. Biol. Chem., 256, 9068–9076.PubMedGoogle Scholar
  43. 43.
    Utsumi, T., Aizono, Y., and Funatsu, G. (1984) Interaction of ricin and its constituent polypeptides with dipalmitoyl-phospatidylcholine vesicles. Biochim. Biophys. Acta, 772, 202–208.PubMedCrossRefGoogle Scholar
  44. 44.
    Simmons, B.M., Stahl, P.D., and Russell, J.H. (1986) Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for A chain translocation. J. Biol. Chem., 261, 7912–7920.PubMedGoogle Scholar
  45. 45.
    Allured, V.S., Collier, R.J., Carrol, S.F., and McKay, D.B. (1986) Structure of exotoxin A of Pseudomonas aeruginosa at 3.0Å resolution. Proc. Natl. Acad. Sci., USA, 83, 1320–1324.PubMedCrossRefGoogle Scholar
  46. 46.
    Sandvig, K., Olsnes, S., and Pihl, A. (1976) Kinetics of binding of the toxic lectins abrin and ricin to surface receptors on human cells. J. Biol. Chem., 251, 3977–3984.PubMedGoogle Scholar
  47. 47.
    Olsnes, S., Sandvig, K., Eiklid, K., and Pihl, A. (1978) Properties and mechanism of action of the toxic lectin modeccin. Interaction with cell lines resistant to modeccin, abrin and ricin. J. Supramol. Struct., 9, 15–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Gleeson, P.A., and Hughes, R.C. (1985) Binding and uptake of the toxic lectin modeccin by baby hamster kidney (BHK) cells. Isolation of mutants defective in the internalization of modeccin. J. Cell. Sci., 76, 283–301.PubMedGoogle Scholar
  49. 49.
    Rosen, S.W., and Hughes R.C. (1977) Effects of neuraminidase on lectin binding by wild-type and ricin-resistant strains of hamster fibroblasts. Biochemistry, 16, 4908–4915.PubMedCrossRefGoogle Scholar
  50. 50.
    Sandvig, K., Olsnes, S., and Pihl, A. (1978) Binding, uptake and degradation of the toxic proteins abrin and ricin by toxin-resistant cells. Eur. J. Biochem., 82, 13–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Sandvig, K., Olsnes, S., and Pihl, A. (1978) Chemical modifications of the toxic lectins abrin and ricin. Eur. J. Biochem., 84, 323–331.PubMedCrossRefGoogle Scholar
  52. 52.
    Shimoda, T., and Funatsu, G. (1985) Effects of iodination on cytoagglutination by and toxicity of Ricinus communis lectins. Agric. Biol. Chem., 49, 1175–1180.CrossRefGoogle Scholar
  53. 53.
    Mise, T., and Shimoda, T., and Funatsu, G. (1986) Indentification of a tyrosyl residue present in the high-affinity saccharide-binding site of ricin D. Agric. Biol. Chem., 50, 151–155.CrossRefGoogle Scholar
  54. 54.
    Patanjali, S.R., Swamy, M.J., Anantharam, V., Khan, M.I., and Surolia, A. (1984) Chemical modification studies on Abrus agglutinin. Biochem. J., 217, 773–781.PubMedGoogle Scholar
  55. 55.
    Yamasaki, N., Absar, N., and Funatsu, G. (1985) Chemical modification of tryptophan residues in castor bean hemaglutinin. Agric. Biol. Chem., 49, 3301–3308.CrossRefGoogle Scholar
  56. 56.
    Robertus, J.D., and Ready, M.P. (1984) Ricin B chain and discoidin I share a common primitive protein fold. J. Biol. Chem., 259, 13953–13956.PubMedGoogle Scholar
  57. 57.
    Youle, R.J., Murray, G.J., and Neville, D.M., Jr. (1981) Ricin linked to monophosphopentamannose binds to fibroblast lysosomal hydrolase receptors, resulting in a cell-typespecific toxin. Proc. Natl. Acad. Sci. USA, 76, 5559–5562.CrossRefGoogle Scholar
  58. 58.
    Thorpe, P.E., Detre, S.I., Foxwell, B.M., Brown, A.N.F., Skilleter, D.N., Wilson, G., Forrester, J.A., and Stirpe, F. (1985) Modification of the carbohydrate in ricin with metaperiodate-cyanoborohydride mixtures. Eur. J. Biochem., 147, 197–206.PubMedCrossRefGoogle Scholar
  59. 59.
    Skilleter, D.N., Price, R.J., and Thorpe, P.E. (1985) Modification of the carbohydrate in ricin with metaperiodate and cyanoborohydride mixtures: Effect on binding, uptake and toxicity to parenchymal and non-parenchymal cells of rat liver. Biochim. Biophys. Acta, 842, 12–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Skilleter, D.N., and Foxwell, B.M. (1986) Selective uptake of ricin A-chain by hepatic non-parenchymal cells in vitro. FEBS Lett., 196, 344–348.CrossRefGoogle Scholar
  61. 61.
    Eiklid, K., and Olsnes, S. (1980) Interaction of Shigella shigae cytotoxin with receptors on sensitive and insensitive cells. J. Rec. Res., 1, 199–213.Google Scholar
  62. 62.
    Fuchs, G., Mobassaleh, M., Donohue-Rolfe A., Montgomery, R.K., Grand, R.J., and Keusch, G.T. (1986) Pathogenesis of shigella diarrhea: Rabbit intestinal cell microvillus membrane binding site for shigella toxin. Infect. Immun., 53, 372–377.PubMedGoogle Scholar
  63. 63.
    Brown, J.E., Karlsson, K.A., Lindberg, A., Strömberg, N., and Thurin, J. (1983) Identification of the receptor glycolipid for the toxin of Shigella dysenteriae. Seventh Int. Symp. on Glycoconjugates, pp 678.Google Scholar
  64. 64.
    Jacewicz, M., Clausen, H., Nudelman, E., Donohue-Rolfe, A., and Keusch, G.T., Pathogenesis of shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotri-aosylceramide. J. Exp. Med., 163, 1391–1404.Google Scholar
  65. 65.
    Keusch, G.T., Jacewicz, and Donohue-Rolfe, A. (1986) Pathogenesis of Shigella diarrhea: Evidence for an N-linked glycoprotein shigella toxin receptor and receptor modulation by β-galactosidase. J. Infect. Dis., 153, 238–248.PubMedCrossRefGoogle Scholar
  66. 66.
    Olsnes, S., and Eiklid, K. (1980) Isolation and characterization of Shigella shigae toxin. J. Biol. Chem., 255, 284–289.PubMedGoogle Scholar
  67. 67.
    Montecucco, C. (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends in Biochem. Science, 11, 314–317.CrossRefGoogle Scholar
  68. 68.
    Manhart, M.D., Morris, R.E., Bonventre, P.F., Leppla, S., and Saelinger, C.B. (1984) Evidence for Pseudomonas exotoxin A receptors on plasma membrane of toxin-sensitive LM fibroblasts. Infect. Immun., 45, 596–603.PubMedGoogle Scholar
  69. 69.
    Ittelson, T.R., and Gill, D.M. (1973) Diphtheria toxin: Specific competition for cell receptors. Nature, 242, 330–332.PubMedCrossRefGoogle Scholar
  70. 70.
    Uchida, T., Pappenheimer, A.M., Jr., and Harper, A.A. (1972) Reconstitution of diphtheria toxin from two nontoxic crossreacting mutant proteins. Science, 175, 901–903.PubMedCrossRefGoogle Scholar
  71. 71.
    Creagan, R.P., Chen, S., and Ruddle, F.H. (1975) Genetic analysis of the cell surface: Association of human chromosome 5 with sensitivity to diphtheria toxin in mouse-human somatic cell hybrids. Proc. Natl. Acad. Sci. USA, 72, 2237–2241.PubMedCrossRefGoogle Scholar
  72. 72.
    Athwal, R.S., Searle, B.M., and Jansons, V.K. (1985) Diphtheria toxin sensitivity in a monochromosomal hybrid containing human chromosome 5. J. Hered., 76, 329–334.PubMedGoogle Scholar
  73. 73.
    Chang, T.M., and Neville, D.M., Jr. (1978) Demonstration of diphtheria toxin receptors on surface membranes from both toxin sensitive and toxin resistant species. J. Biol. Chem., 253, 6866–6871.PubMedGoogle Scholar
  74. 74.
    Boquet, P., and Pappenheimer, A.M., Jr. (1976) Interaction of diphtheria toxin with mammalian cell membranes. J. Biol. Chem., 251, 5770–5778.PubMedGoogle Scholar
  75. 75.
    Middlebrook, J.L., Dorland, R.B., and Leppla, S.H. (1978) Association of diphtheria toxin with Vero cells. Demonstration of a receptor. J. Biol. Chem., 253, 7325–7330.PubMedGoogle Scholar
  76. 76.
    Sandvig, K., and Olsnes, S. (1982) Entry of the toxic proteins abrin, modeccin, ricin and diphtheria toxin into cells. I. Requirement for calcium. J. Biol. Chem., 257, 7495–7503.PubMedGoogle Scholar
  77. 77.
    Kushnyarov, V.M., MacDonald, H.S., Sedmak, J.J., and Grossberg, S.E. (1984) Diphtheria toxin receptor sites on membranes of cultured cells and erythrocytes demonstrated by fluorescence and electron microscopy. Cytobios, 41, 7–22.Google Scholar
  78. 78.
    Kaneda, Y., Uchida, T., Mekada, E., Nakanishi, M., and Okada, Y. (1984) Entry of diphtheria toxin into cells: Possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins. J. Cell. Biol., 98, 466–472.PubMedCrossRefGoogle Scholar
  79. 79.
    Eidels, L., and Hart, D.A. (1982) Effect of polymers of L-lysine on the cytotoxic action of diphtheria toxin. Infect. Immun., 37, 1054–1058.PubMedGoogle Scholar
  80. 80.
    Eidels, L., Ross, L.L., and Hart, D.A. (1982) Diphtheria toxin-receptor interaction: A polyphosphate-insensitive diphtheria toxin-binding domain. Biochem. Biophys. Res. Comm., 109, 493–499.PubMedCrossRefGoogle Scholar
  81. 81.
    Proia, R.L., Hart, D.A., and Eidels, L. (1979) Interaction of diphtheria toxin with phosphorylated molecules. Infect. Immun., 26, 942–948.PubMedGoogle Scholar
  82. 82.
    Proia, R.L., Eidels, L., and Hart, D.A. (1981) Diphtheria toxin: Receptor interaction. Characterization of the receptor interaction with the nucleotide-free toxin, the nucleotide-bound, and the B-fragment of the toxin. J. Biol. Chem., 256, 4991–4997.PubMedGoogle Scholar
  83. 83.
    Proia, R.L., Wray, S.K., Hart, D.A., and Eidels, L. (1980) Characterization and affinity labeling of the cationic phosphate-binding (nucleotide-binding) peptide located in the receptor-binding region of the B-fragment of diphtheria toxin. J. Biol. Chem., 255, 12025–12033.PubMedGoogle Scholar
  84. 84.
    Hranitzky, K.W., Durham, D.L., Hart, D.A., and Eidels, L. (1985) Role of glycosylation in expression of functional diphtheria toxin receptors. Infect. Immun., 49, 336–343.PubMedGoogle Scholar
  85. 85.
    Eidels, L., Proia, R.L., and Hart, D.A. (1983) Membrane receptors for bacterial toxins. Microbiol. Rev., 47, 596–620.PubMedGoogle Scholar
  86. 86.
    Mekada, E., Uchida, T., and Okada, Y. (1979) Modification of the cell surface with neuraminidase increases the sensitivities of cells to diphtheria toxin and Pseudomonas aeruginosa exotoxin. Exp. Cell. Res., 123, 137–146.PubMedCrossRefGoogle Scholar
  87. 87.
    Leppla, S.H., Dorland, R.B., and Middlebrook, J.L., (1980) Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine. J. Biol. Chem., 255, 2247–2250.PubMedGoogle Scholar
  88. 88.
    Lory, S., and Collier, R.J. (1980) Diphtheria toxin: Nucleotide binding and toxin heterogeneity. Proc. Natl. Acad. Sci. USA, 77, 267–271.PubMedCrossRefGoogle Scholar
  89. 89.
    Lory, S., Carroll, S.F., and Collier, R.J. (1980) Ligand interactions of diphtheria toxin. II. Relationship between the NAD site and the P site. J. Biol. Chem., 255, 12016–12019.PubMedGoogle Scholar
  90. 90.
    Barbieri, J.T., Carroll, S.F., Collier, R.J., and McCloskey, J.M. (1981) An endogenous dinucleotide bound to diphtheria toxin. Adenyl-(3’, 5’)-uridine 3’-monophosphate. J. Biol. Chem., 256, 12247–12251.PubMedGoogle Scholar
  91. 91.
    Barbieri, J.T., Collins, C.M., and Collier, R.J. (1986) Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3’, 5’)-uridine 3’-monophosphate, Biochemistry, 25, 6608–6611.PubMedCrossRefGoogle Scholar
  92. 92.
    Carroll, S.F., Barbieri, J.T., and Collier, R.J. (1986) Dimeric form of diphtheria toxin: Purification and characterization. Biochemistry, 25, 2425–2430.PubMedCrossRefGoogle Scholar
  93. 93.
    Mekada, E., and Uchida, T. (1985) Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J. Biol. Chem., 260, 12148–12153.PubMedGoogle Scholar
  94. 94.
    Uchida, T., Pappenheimer, A.M., Jr., and Greany, R. (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem., 248, 3838–3844.PubMedGoogle Scholar
  95. 95.
    Colombatti, M., Greenfield, L, and Youle, R.J. (1986) Cloned fragment of diphtheria toxin linked to T cell-specific antibody indentifies regions of B chain active in cell entry. J. Biol. Chem., 261, 3030–3035.PubMedGoogle Scholar
  96. 96.
    Wright, H.T., Marston, A.W., and Goldstein, D.J. (1984) A functional role for cysteine disulfides in the trans-membrane transport of diphtheria toxin. J. Biol. Chem., 259, 1649–1654.PubMedGoogle Scholar
  97. 97.
    Rappuoli, R. Ratti, G., Giannini, G., Perugini, M., and Murphy, J.R. (1985) Mol. Biol. Microb. Pathog. Meet., Luleá. Abstract, in press.Google Scholar
  98. 98.
    O’Keefe, D.O., and Draper, R.K. (1985) Characterization of a transferrin-diphtheria toxin conjugate. J. Biol. Chem., 260, 932–937.PubMedGoogle Scholar
  99. 99.
    Guillemot, J.C., Sundan, A., Olsnes, S., and Sandvig, K., (1985) Entry of diphtheria toxin linked to concanavalin A into primate and murine cells. J. Cell. Physiol., 122, 193–199.PubMedCrossRefGoogle Scholar
  100. 100.
    Morris, R.E., Gerstein, A.S., Bonventre, P.F., and Saelinger, C.B., (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: Electron microscopic evaluation. Infect. Immun., 50, 721–727.PubMedGoogle Scholar
  101. 101.
    Olsnes, S., Sandvig, K., Madshus, LH., and Sundan, A., (1985) Entry mechanisms of protein toxins and picornaviruses. Biochem. Soc. Symp., 50, 171–192.PubMedGoogle Scholar
  102. 102.
    Moehring, T.J., and Crispell, J.B. (1974) Enzyme treatment of KB cells: The altered effect of diphtheria toxin. Biochem. Biophys. Res. Commun., 60, 1446–1452.PubMedCrossRefGoogle Scholar
  103. 103.
    Olsnes, S., Carvajal, E., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. III. Effect on toxin binding and anion transport of tumor-promoting phorbol esters, vanadate, fluoride and salicylate. J. Biol. Chem., 261, 1562–1569.PubMedGoogle Scholar
  104. 104.
    Sandvig, K., and Olsnes, S. (1984) Anion requirements and effect of anion transport inhibitors on the response of Vero cells to diphtheria toxin and modeccin. J. Cell Physiol., 119, 7–14.PubMedCrossRefGoogle Scholar
  105. 105.
    Olsnes, S., and Sandvig, K. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells. II. Inhibition of anion antiport by diphtheria toxin. J. Biol. Chem., 261, 1553–1561.PubMedGoogle Scholar
  106. 106.
    Sandvig, K., Sundan, A., and Olsnes, S. (1985) Effect of potassium depletion of cells on the sensitivity to diphtheria toxin and Pseudomonas toxin. J. Cell. Physiol., 124, 54–60.PubMedCrossRefGoogle Scholar
  107. 107.
    Shoyab, M., DeLarao, J.E., and Todaro, G.T. (1979) Biologically active phorbol esters specifically alter affinity of epidermal growth factor membrane receptors. Nature, 279, 387–391.PubMedCrossRefGoogle Scholar
  108. 108.
    Sandvig, K., and Olsnes, S. (1986) Interactions between diphtheria toxin entry and anion transport in Vero cells, IV. Evidence that entry of diphtheria toxin is dependent on efficient anion transport. J. Biol. Chem., 261, 1570–1575.PubMedGoogle Scholar
  109. 109.
    Cabantchik, Z.I., Knauf, P.A., and Rothstein, A. (1978) The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of ‘probes’. Biochim. Biophys. Acta, 515, 239–302.PubMedGoogle Scholar
  110. 110.
    Demuth, D.R., Showe, L.C., Ballantine, M., Palumbo, A., Fraser, P.J., Cioe, L., Rovera, G., and Curtis, P.J. (1983) Cloning and structural characterization of a human nonerythroid band 3-like protein. EMBO J., 5, 1205–1214.Google Scholar
  111. 111.
    Morris, R.E., Manhart, M.D., and Saelinger, C.B. (1983) Receptor-mediated entry of Pseudomonas toxin: Methylamine blocks clustering step. Infect. Immun., 40, 806–811.PubMedGoogle Scholar
  112. 112.
    Morris, R.E., and Saelinger, C.B. (1986) Reduced temperature alters Pseudomonas exotoxin A entry into the mouse LM cell. Infect. Immun., 52, 445–453.PubMedGoogle Scholar
  113. 113.
    FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1983) Inhibition of activity of Pseudomonas toxin by methylamine. Rev. Infect. Dis., 5, S985 - S991.PubMedCrossRefGoogle Scholar
  114. 114.
    Draper, R.K., O’Keefe, D.O., Stookey, M., and Gravaer, J. (1984) Identification of a cold-sensitive step in the mechanism of modeccin action. J. Biol. Chem., 259, 4083–4088.PubMedGoogle Scholar
  115. 115.
    Sandvig, K., Sundan A., and Olsnes, S. (1984) Evidence that modeccin and diphtheria toxin enter the cytosol from different vesicular compartments. J. Cell. Biol., 98, 963–970.PubMedCrossRefGoogle Scholar
  116. 116.
    FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1982) Essential role of calcium in cellular internalization of Pseudomonas toxin. Infect. Immun., 35, 715–720.PubMedGoogle Scholar
  117. 117.
    Kuratomi, Y., Akiyama, S. -I., Ono, M, Shiraishi, N., Shimada, T., Ohkuma, S., and Kuwano, M. (1986) Thioridazine enhances lysosomal accumulation of epidermal growth factor and toxicity of conjugates of epidermal growth factor with Pseudomonas exotoxin. Exp. Cell Res., 162, 436–448.PubMedCrossRefGoogle Scholar
  118. 118.
    Akiyama, S. -I., Gottesman, M.M., Hanover, J.A., FitzGerald, D.J., Willingham, M.C., and Pastan, I. (1984) Verapamil enhances the toxicity of conjugates of epidermal growth factor with Pseudomonas exotoxin and antitransferrin receptor with Pseudomonas exotoxin. J. Cell. Physiol., 120, 271–279.PubMedCrossRefGoogle Scholar
  119. 119.
    Moya, M., Dautry-Varsat, A., Goud, B., Louvard, D., and Boquet, P. (1985) Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J. Cell Biol., 101, 548–559.PubMedCrossRefGoogle Scholar
  120. 120.
    Gonates, J., Stieber, A., Olsnes, S., and Gonatas, N. (1980) Pathways involved in fluid phase and adsorptive endocytosis in neuroblastoma. J. Cell Biol., 87, 579–588.CrossRefGoogle Scholar
  121. 121.
    van Deurs, B., Pedersen, O.W., Olsnes, S., Sandvig, K., and Sundan, A. (1985) Receptor-mediated endocytosis of ricin: Intracellular routing to the vacuolar and tubulovesicular portions of endosomal system visualized by a ligand-gold conjugate. Exp. Cell Res., 159, 287–304.PubMedCrossRefGoogle Scholar
  122. 122.
    Sandvig, K., Olsnes, S., Pedersen, O.W., and van Deurs, B. (1987) Acidification of the cytosol inhibits endocytosis from coated pits. Evidence for an alternative pathway of endocytosis. J. Cell. Biol., 105, 679–689.PubMedCrossRefGoogle Scholar
  123. 123.
    van Deurs, B., Tonnessen, T.I., Pedersen, O.W., Sandvig, K., and Olsnes, S. (1986) Routing of internalized ricin and ricin-conjugates to the Golgi complex. J. Cell. Biol., 102, 37–47.PubMedCrossRefGoogle Scholar
  124. 124.
    Sandvig, K., Tonnessen, T.I., and Olsnes, S. (1986) Ability of inhibitors of glycosylation and protein synthesis to sensitize cells to abrin, ricin, shigella toxin and Pseudomonas toxin. Cancer Res., 46, 6418–6422.PubMedGoogle Scholar
  125. 125.
    Sandvig, K., Olsnes, S., and Pihl, A. (1979) Inhibitory effect of ammonium chloride and chloroquine on the entry of the toxic lectin modeccin into HeLa cells. Biochem. Biophys. Res. Commun., 90, 648–655.PubMedCrossRefGoogle Scholar
  126. 126.
    Mecada, E., Uchida, T., and Okada, Y. (1981) Methylamine stimulates the action of ricin toxin, but inhibits that of diphtheria toxin. J. Biol. Chem., 256, 1225–1228.Google Scholar
  127. 127.
    Griffiths, G., and Simons, K. (1986) The trans-Golgi network: Sorting at the exit site of the Golgi complex. Science, 234, 438–443.PubMedCrossRefGoogle Scholar
  128. 128.
    Sandvig, K., and Olsnes, S. (1979) Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells. Exp. Cell. Res., 121, 15–25.PubMedCrossRefGoogle Scholar
  129. 129.
    Sandvig, K., and Olsnes, S. (1980) Diphtheria toxin entry into cells is facilitated by low pH. J. Cell. Biol., 87, 828–832.PubMedCrossRefGoogle Scholar
  130. 130.
    Draper, R.K., and Simon, M.I. (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement. J. Cell. Biol., 87, 849–854.PubMedCrossRefGoogle Scholar
  131. 131.
    Blewitt, M.G., Zhao, F.-M., KcKeever, B., Raghupathy, S., and London, E. (1984) Fluorescence characterization of the low pH-induced change in diphtheria toxin conformation: Effect of salt. Biochem. Biophys. Res. Commun., 120, 286–290.PubMedCrossRefGoogle Scholar
  132. 132.
    Blewitt, M.G., Chung, L.A., and London, E. (1984) Effect of pH on the conformation of diphtheria toxin and its implication for membrane penetration. Biochemistry, 24, 5458–5464.CrossRefGoogle Scholar
  133. 133.
    Zalman, L.S., and Wisnieski, B.J. (1984) Mechanism of insertion of diphtheria toxin: Peptide entry and pore size determinations. Proc. Natl. Acad. Sci. USA, 81, 3341–3345.PubMedCrossRefGoogle Scholar
  134. 134.
    Hu, V.W., and Holmes, R.K., (1984) Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes. J. Biol. Chem., 259, 12226–12233.PubMedGoogle Scholar
  135. 135.
    Montecucco, C., Shiavo, G., and Tomasi, M. (1985) pH-dependence of the phospholipid interaction of diphtheria-toxin fragments. Biochem. J., 231, 123–128.PubMedGoogle Scholar
  136. 136.
    Kagan, B.L., Finkelstein, A., and Colombini, M. (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc. Natl. Acad. Sci., 78, 4950–4954.PubMedCrossRefGoogle Scholar
  137. 137.
    Donovan, J.J., Simon, M.I., Draper, R.K., and Montai, M., (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc. Natl. Acad. Sci. USA, 78, 172–176.PubMedCrossRefGoogle Scholar
  138. 138.
    Donovan, J.J., Simon, M.I., and Montai, M. (1982) Insertion of diphtheria toxin into and across membranes: Role of phosphoinositide asymmetry. Nature, 298, 669–672.PubMedCrossRefGoogle Scholar
  139. 139.
    Deleers, M., Beugnier, N., Falmagne, P., Cabiaux, V., Ruysschaert, J.-M. (1983) Localization in diphtheria toxin fragment B of a region that induces pore formation in planar lipid bilayers at low pH. FEBS Lett., 160, 82–86.PubMedCrossRefGoogle Scholar
  140. 140.
    Falmagne, P., Capiau, C., Lambotte, P., Zanen, J., Cabiaux, V., and Ruysschaert, J.-M. (1985) The complete amino acid sequence of diphtheria toxin fragment B. Correlation with its lipid-binding properties. Biochim. Biophys. Acta, 827, 45–50.PubMedCrossRefGoogle Scholar
  141. 141.
    Brasseur, R., Cabiaux, V., Falmagne, P., and Ruysschaert, J.-M. (1986) pH dependent insertion of a diphtheria toxin B fragment peptide into the lipid membrane; a conformational analysis. Biochem. Biophys. Res. Commun., 136, 160–168.Google Scholar
  142. 142.
    Donovan, J.J., Simon, M.I., and Montai, M. (1985) Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. J. Biol. Chem., 260, 8817–8823.PubMedGoogle Scholar
  143. 143.
    Cabiaux, V., Vandenbranden, M., Falmagne, P., and Ruysschaert, J.-M. (1984) Diphtheria toxin induces fusion of small unilamellar vesicles at low pH. Biochim. Biophys. Acta, 775, 31–36.PubMedCrossRefGoogle Scholar
  144. 144.
    Moehring, J.M., and Moehring, T.J. (1983) Strains of CHO-Kl cells resistant to Pseudomonas exotoxin A and cross-resistant to diphtheria toxin and viruses. Infect. Immun., 41, 998–1009.PubMedGoogle Scholar
  145. 145.
    Robbins, A.R., Peng, S.S., and Marshall, J.L. (1983) Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis. J. Cell. Biol., 96, 1064–1071.PubMedCrossRefGoogle Scholar
  146. 146.
    Marnell, M.H., Shia, S. -P., Stookey, M., and Draper, R.K. (1984) Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane. Infect. Immun., 44, 145–150.PubMedGoogle Scholar
  147. 147.
    Marnell, M.H., Mathis, L.S., Stookey, M., Shia, S.-P., Stone, D.K., and Draper, R.K. (1984) A Chinese hamster ovary cell mutant with a heat-sensitive, conditional-lethal defect in vacuolar function. J. Cell. Biol., 99, 1907–1916.PubMedCrossRefGoogle Scholar
  148. 148.
    Robbins, A.R., Oliver, C., Bateman, J.L, Krag, S.S., Galloway, C.J., and Mellman, I. (1984) A single mutation in Chinese hamster ovary cells impairs both Golgi and endosomal functions. J. Cell. Biol., 99, 1296–1308.PubMedCrossRefGoogle Scholar
  149. 149.
    Sandvig, K., Tønnessen, T.I., Sand, O., and Olsnes, S., (1986) Diphtheria toxin entry into cells is inhibited by acidification of the cytosol. J. Biol. Chem., 261, 11639–11644.PubMedGoogle Scholar
  150. 150.
    Tønnessen, T.I., Ludt, J., Sandvig, K., and Olsnes, S. (1987) Bicarbonate/chloride antiport in Vero cells. I. Evidence for both sodium linked and sodium independent exchange. J. Cell. Physiol. 132, 183–191.PubMedCrossRefGoogle Scholar
  151. 151.
    Olsnes, S., Ludt, J., Tonnessen, T.I., and Sandvig, K. (1987) Bicarbonate/chloride antiport in Vero cells. II. Mechanism of bicarbonate/dependent regulation of intracellular pH. J. Cell. Physiol., 132, 192–202.PubMedCrossRefGoogle Scholar
  152. 152.
    Cabantchik, Z.I., and Rothstein, A. (1974) Membrane proteins related to anion permeability of human red blood cell. I. Localization of disulfonic stilbene binding sites in protein involved in permeation. J. Membr. Biol., 15, 207–226.PubMedCrossRefGoogle Scholar
  153. 153.
    Hoffman, E. (1986) Anion transport systems in the plasma membrane of vertebrate cells. Biochim. Biophys. Acta, 864, 1–31.Google Scholar
  154. 154.
    Madshus, LH., and Olsnes, S. (1987) Selective inhibition of sodium-linked and sodium-independent bicarbonate/choride antiport in Vero cells. J. Biol. Chem., 262, 7486–7491.PubMedGoogle Scholar
  155. 155.
    Moskaug, J.O., Sandvig, K. and Olsnes, S. (1987) Cell-mediated reduction of the inter-fragment disulfide in nicked diphtheria toxin. A new method to study toxin entry at low pH. J. Biol. Chem., 262, 10339–10345.PubMedGoogle Scholar
  156. 156.
    FitzGerald, D., Morris, R.E., and Saelinger, C.B. (1980) Receptor-mediated internalization of pseudomonas toxin by mouse fibroblasts. Cell, 21, 867–873.PubMedCrossRefGoogle Scholar
  157. 157.
    Sundan, A., Sandvig, K., and Olsnes, S. (1984) Calmodulin antagonists sensitize cells to pseudomonas toxin. J. Cell. Physiol., 119, 15–22.PubMedCrossRefGoogle Scholar
  158. 158.
    Didsbury, J.R., Moehring, J.M., and Moehring, T.J., (1983) Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Mol. Cell. Biol., 3, 1283–1294.PubMedGoogle Scholar
  159. 159.
    Sandvig, K., and Olsnes, S. (1982) Entry of the toxic proteins abrin, modeccin, ricin and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors and ionophores and evidence for penetration from endocytotic vesicles. J. Biol. Chem., 257, 7504–7513.PubMedGoogle Scholar
  160. 160.
    Zalman, L.S., and Wisnieski, B.J. (1985) Characterization of the insertion of Pseudomonas exotoxin A into membranes. Infect. Immun., 50, 630–635.PubMedGoogle Scholar
  161. 161.
    Sundan, A., Sandvig, K., and Olsnes, S. (1984) Effect of malignant transformation, retinoic acid, trifluoperazine and W7 on the sensitivity of cells of Pseudomonas toxin. Cancer Res., 44, 4919–4923.PubMedGoogle Scholar
  162. 162.
    Brown, W.J., Goodhouse, J., and Farquahar, M.G. (1986) Mannose-6-phosphate receptor for lysosomal enzymes cycle between the Golgi complex and endosomes. J. Cell. Biol., 103, 1235–1247.PubMedCrossRefGoogle Scholar
  163. 163.
    Ray, B., and Wu, H.C. (1981) Enhanced internalization of ricin in nigericin-pretreated Chinese hamster ovary cells. Mol. Cell. Biol., 1, 560–567.PubMedGoogle Scholar
  164. 164.
    Ischida, B., Cawley, D.B., Relle, K., and Wisnieski, B.J., (1983) Lipid-protein interactions during ricin toxin insertion into membranes. Evidence for A and B chain penetration. J. Biol. Chem., 258, 5933–5937.Google Scholar
  165. 165.
    Sandvig, K., and Brown, J.E. (1987) Ionic requirements for entry of Shiga toxin from Shigella dysenteriae 1 into cells. Infect. Immun., 55, 298–303.PubMedGoogle Scholar
  166. 166.
    Wellner, R.B., Ray, B., Ghosh, P.C., and Wu, H.C. (1984) Genetic and biochemical analysis of mutation(s) affecting ricin internalization in Chinese hamster ovary cells. J. Biol. Chem., 259, 12788–12793.PubMedGoogle Scholar
  167. 167.
    Ghosh, P.C., Wellner, R.B., Cragoe, E.J., Jr., and Wu, H.C. (1985) Enhancement of ricin cytotoxicity in Chinese hamster ovary cells by depletion for intracellular K+: Evidence for an Na+/H+ exchange system in Chinese hamster ovary cells. J. Cell Biol., 101, 350–357.PubMedCrossRefGoogle Scholar
  168. 168.
    Foddy, L., Feeney, J., and Hughes, R.C. (1986) Properties of baby-hamster kidney (BHK) cells treated with swainsonine, an inhibitor of glycoprotein processing. Comparison with ricin-resistant BHK-cell mutants. Biochem. J., 233, 697–706.PubMedGoogle Scholar
  169. 169.
    Fulton, R.J. Blakey, D.C., Knowles, P.P., Uhr, J.W., Thorpe, P.E., and Vitetta, E.S. (1986) Purification of ricin A1, A2, and B chains and characterization of their toxicity. J. Biol. Chem., 261, 5314–5319.PubMedGoogle Scholar
  170. 170.
    Avdonin, P.V., Tonevitsky, A.G., and Grigoryan, G.Y. (1985) Activation of Ca2+ entry into cells by ricin B-subunit. Biologicheskie Membrany, 2, 800–805.Google Scholar
  171. 171.
    Herschman, H.R. (1984) The role of binding ligand in toxic hybrid proteins: A comparison of EGF-ricin, EGF-ricin A-chain, and ricin. Biochem. Biophys. Res. Comm., 124, 551–557.PubMedCrossRefGoogle Scholar
  172. 172.
    van Deurs, B., Petersen, O.W., Olsnes, S., and Sandvig, K. (1987) Delivery of internalized ricin from endosomes to cisternal Golgi elements is a discontinuous, temperature sensitive process. Exp. Cell. Res., 171, 137–152.PubMedCrossRefGoogle Scholar
  173. 173.
    Hudson, T.H., and Neville, D.M., Jr. (1985) Quantal entry of diphtheria toxin to the cytosol. J. Biol. Chem., 260, 2675–2680.PubMedGoogle Scholar
  174. 174.
    Neville, D.M., Jr., and Hudson, T.H. (1986) Transmembrane transport of diphtheria toxin, related toxins, and colicins. Ann. Rev. Biochem., 55, 195–224.PubMedCrossRefGoogle Scholar
  175. 175.
    Middlebrook, J.L. and Dorland, R.B. (1984) Bacterial toxins: Cellular mechanisms of action. Microbiol. Rev., 48, 199–221.PubMedGoogle Scholar
  176. 176.
    Nygard, O., and Nilsson, L. (1985) Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes. Biochim. Biophys. Acta, 824, 152–162.PubMedGoogle Scholar
  177. 177.
    Moynihan, M.R., and Pappenheimer, A.M., Jr. (1981) Kinetics of adenosinediphosphoribosylation of elongation factor 2 in cells exposed to diphtheria toxin. Infect. Immun., 32, 575–582.PubMedGoogle Scholar
  178. 178.
    Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell, 15, 245–250.PubMedCrossRefGoogle Scholar
  179. 179.
    Chung, D.W., and Collier, R.J. (1977) The mechanism of ADP-ribosylation of elongation factor 2 catalyzed by fragment A from diphtheria toxin. Biochim. Biophys. Acta, 483, 248–257.PubMedGoogle Scholar
  180. 180.
    van Ness, B.G., Howard, J.B., and Bodley, J.W. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J. Biol. Chem., 255, 10710–10716.PubMedGoogle Scholar
  181. 181.
    Bodley, J.W., Upham, R., Crow, F.W., Tomer, K.B., and Gross, M.L. (1984) Ribosyldiphthamide: Confirmation of structure by fast atom bombardment mass spectrometry. Arch. Biochem. Biophys., 230, 590–593.PubMedCrossRefGoogle Scholar
  182. 182.
    Kessel, M. and Klink, F. (1980) Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin. Nature, 287, 250–251.PubMedCrossRefGoogle Scholar
  183. 183.
    Chen, J.-Y. C., Bodley, J.W., and Livingston, D.M. (1985) Diphtheria toxin-resistant mutants of Saccharomyces cerevisiae. Mol. Cell Biol., 5, 3357–3360.Google Scholar
  184. 184.
    Gehrmann, R., Henschen, A., and Klink, F. (1985) Primary structure of elongation factor 2 around the site of ADP-ribosylation is highly conserved from archaebacteria to eukaryotes. FEBS Lett., 185, 37–42.PubMedCrossRefGoogle Scholar
  185. 185.
    Moehring, T.J., Danley, D.E., and Moehring, J.M. (1984) In vitro biosynthesis of diphthamide, studied with mutant Chinese hamster ovary cells resistant to diphtheria toxin. Mol. Cell. Biol., 4, 642–650.PubMedGoogle Scholar
  186. 186.
    Iglewski, W.J., and Lee, H. (1983) Purification and properties of an altered form of elongation factor 2 from mutant cells resistant to intoxication by diphtheria toxin. Eur. J. Biochem., 134, 237–240.PubMedCrossRefGoogle Scholar
  187. 187.
    Lee, H., and Iglewski, W.J. (1984) Cellular ADP-ribosyl-transferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A. Proc. Natl. Acad. Sci. USA, 81, 2703–2707.PubMedCrossRefGoogle Scholar
  188. 188.
    Sitikov, A.S., Davydova, E.K., Bezlepkina, T.A., Ovchinnikov, L.P., and Spirin, A.S. (1984) Eukaryotic elongation factor 2 loses its non-specific affinity for RNA and leaves polyribosomes as a result of ADP-ribosylation FEBS Lett., 176, 406–410.PubMedCrossRefGoogle Scholar
  189. 189.
    Sitikov, A.S., Davydova, E.K., and Ovchinnikov, L.P. (1984) Endogenous ADP-ribosylation of elongation factor 2 in polyribosome fraction of rabbit reticulocytes. FEBS Lett., 176, 261–263.PubMedCrossRefGoogle Scholar
  190. 190.
    Carroll, S.F., and Collier, R.J. (1984) NAD binding site of diphtheria toxin: Identification of a residue within the nicotinamide subsite by photochemical modification with NAD. Proc. Natl. Acad. Sci. USA, 81, 3307–3311.PubMedCrossRefGoogle Scholar
  191. 191.
    Carroll, S.F., McCloskey, J.A., Crain, P.F., Oppenheimer, N.J., Marschner, T.M., and Collier, R.J. (1985) Photoaffinity labeling of diphtheria toxin fragment A with NAD: Structure of the photoproduct at position 148. Proc. Nall. Acad. Sci. USA, 82, 7237–7241.CrossRefGoogle Scholar
  192. 192.
    Tweten, R.K., Barbieri, J.T., and Collier, R.J. (1985) Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. J. Biol. Chem., 260, 10392–10394.PubMedGoogle Scholar
  193. 193.
    Sayhan, O., Ozdemirli, M., Nurten, R., and Bermek, E. (1986) On the nature of cellular ADP-ribosyltransferase from rat liver specific for elongation factor 2. Biochem. Biophys. Res. Commun., 139, 1210–1214.PubMedCrossRefGoogle Scholar
  194. 194.
    Reisbig, R., Olsnes, S., and Eiklid, K. (1981) Mechanism of action of Shigella toxin. Evidence for catalytic inactivation of 60S ribosomal subunits by the toxin A-chain J. Biol. Chem., 256, 8781–8744.Google Scholar
  195. 195.
    Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eucaryotic ribosomes. The site and the characteristics of the toxic lectin ricin on eucaryotic ribosomes. J. Biol. Chem., 262, 5908–5912.PubMedGoogle Scholar
  196. 196.
    Endo, Y., and Tsurugi, K. (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eucaryotic ribosomes. J. Biol. Chem., 262, 8128–8130.PubMedGoogle Scholar
  197. 197.
    Srinivasan, Y., Ramprasad, M.P., and Surolia, A. (1985) Chemical modification studies of gelonin. Involvement of arginine residues in biological activity. FEBS Leu., 192, 113–118.CrossRefGoogle Scholar
  198. 198.
    Watanabe, K., and Funatsu, G. (1986) Involvement of arginine residues in inhibition of protein synthesis by ricin A-chain FEBS Lett., 204, 219–222.PubMedCrossRefGoogle Scholar
  199. 199.
    Fernandez-Puentes, C., Benson, S., Olsnes, S., and Pihl, A. (1976) Protective effect of elongation factor 2 on the inactivation of ribosomes by the toxic lectins abrins and ricin. Eur. J. Biochem., 64, 437–443.PubMedCrossRefGoogle Scholar
  200. 200.
    Carrasco, L., Fernadez-Puentes, C., and Vasquez, D. (1975) Effects of ricin on the ribosomal site involved in the interaction of the elongation factors. Eur. J. Biochem., 54, 499–503.PubMedCrossRefGoogle Scholar
  201. 201.
    Nolan, R.D., Grasmuk, H., and Drews, J. (1976) The binding of tritiated elongation factor 1 and 2 to ribosomes from Krebs II mouse ascites cells. The influence of various antibiotics and toxins. Eur. J. Biochem., 64, 69–75.PubMedCrossRefGoogle Scholar
  202. 202.
    Montanaro, L., Sperti, S., and Stirpe, F. (1973) Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem. J., 136, 677–683.PubMedGoogle Scholar
  203. 203.
    Olsnes, S., and Abraham, A.K. (1979) Elongation factor 2 induced sensitization of ribosomes to modeccin. Evidence for specific binding of elongation factor 2 to ribosomes in the absence of nucleotides. Eur. J. Biochem., 93, 447–452.PubMedCrossRefGoogle Scholar
  204. 204.
    Calderwood, S.B., Auclair, F., Donohue-Rolfe, A., Keusch, G.T., and Mekalanos, F.F. (1987) Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 4364–4368.CrossRefGoogle Scholar
  205. 205.
    Brown, J.E., Obrig, T.G., Ussery, M.A., and Moran, T.P. (1986) Shiga toxin from Shigella dysenteriae 1 inhibits protein synthesis in reticulocyte lysates by inactivation of aminoacyl-tRNA binding. Microbiol. Pathogen., 1, 325–334.CrossRefGoogle Scholar
  206. 206.
    Olsnes, S., and Pihl, A. (1986) Construction and properties of chimeric toxins — target-specific cytotoxic agents. In: Internatl. Encycl. Pharm. Ther. Section 119: ‘Pharmacology of bacterial toxins’. ( F. Dorner and J. Drews, eds.) Pergamon Press, Oxford, pp 709–739.Google Scholar
  207. 207.
    Casellas, P., Bourrie, B.J., Gros, P. and Jansen, F.K. (1984) Kinetics of cytotoxicity induced by immunotoxins. J. Biol. Chem., 259, 9359–9364.PubMedGoogle Scholar
  208. 208.
    Raso, V., and Lawrence, J. (1984) Carboxylic ionophores enhance the cytotoxic potency of ligand-and antibody-delivered ricin A chain. J. Exp. Med., 160, 1234–1240.PubMedCrossRefGoogle Scholar
  209. 209.
    Tartakoff, A.M. (1983) Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell, 32, 1026–1028.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Sjur Olsnes
  • Kirsten Sandvig

There are no affiliations available

Personalised recommendations