Skip to main content

Two-Frequency Microwave Quenching of Highly Excited Hydrogen Atoms

  • Chapter
  • 157 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

This contribution is a preliminary report on the study of ionization of hydrogen atoms in Rydberg states by the simultaneous interaction of these atoms with a microwave field with two frequency components. Since the original work of Bayfield and Koch,1 the ionization of a highly excited atom by a single microwave field has been studied experimentally in increasing detail. Recently2 there has been considerable progress in understanding theoretically not only some overall characteristics of the ionization process but also more detailed structures in the ionization curves. The relevant theories have exploited the periodicity of the Hamiltonian to calculate those characteristics. This has motivated us to set up experiments to break this periodicity by applying a second microwave field with a different frequency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Bayfield and P. M. Koch, Phys. Rev. Lett. 33, 258 (1974).

    Article  ADS  Google Scholar 

  2. P. M. Koch, to be published in the Invited Papers of the XV Intl. Conf. on the Physics of Electronic and Atomic Collisions (North-Holland, Brighton, 1987).

    Google Scholar 

  3. K.A.H. van Leeuwen, G. von Oppen, S. Renwick, J. B. Bowlin, P. M. Koch, R. V. Jensen, O. Rath, D. Richards and J. G. Leopold, Phys. Rev. Lett. 55, 2231 (1985).

    Article  ADS  Google Scholar 

  4. K. Halbach and R. F. Holsinger, Part. Accel. 7, 213 (1976).

    Google Scholar 

  5. B. E. Sauer, K.A.H. van Leeuwen, A. Mortazawi-M and P. M. Koch, in preparation.

    Google Scholar 

  6. Note: a difference with the contribution of J. E. Bayfield in this book is that his experiments are done with one parabolic substate, corresponding to quasi-one-dimensional atoms, whereas our experiments are done with a statistical distribution of all substates for a given principal quantum number, corresponding to three-dimensional atoms. P. M. Koch in Fundamental Aspects of Quantum Theory, ed. V. Gorini and A. Frigerio (Plenum, 1986); P. M. Koch, K.A.H. van Leeuwen, O. Rath, D. Richards and R. V. Jensen in Lecture Notes in Physics 278, The Physics of Phase Space, ed. Y. S. Kim and W. W. Zachary (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  7. J. G. Leopold and I. C. Percival, J. Phys. B: Atom. Mol. Phys. 12, 709 (1979).

    Article  ADS  Google Scholar 

  8. D. A. Jones, J. G. Leopold and I. C. Percival, J. Phys. B: Atom. Mol. Phys. 13, 31 (1980).

    Article  ADS  Google Scholar 

  9. R. V. Jensen, Phys. Rev. A 30, 386 (1984).

    Article  ADS  Google Scholar 

  10. J. G. Leopold and D. Richards, J. Phys. B: Mol. Phys. 18, 3369 (1985).

    Article  ADS  Google Scholar 

  11. See P. M. Koch and P. M. Koch, et al. in Ref. 6.

    Google Scholar 

  12. R. Blümel and U. Smilansky, Z. Phys. D: Atoms, Molecules and Clusters 6, 83 (1987).

    Article  Google Scholar 

  13. R. Blümel and U. Smilansky, Phys. Scr. 35, 15 (1987).

    Article  ADS  Google Scholar 

  14. R. Blümel and U. Smilansky, Phys. Rev. Lett. 58, 2531 (1987).

    Article  ADS  Google Scholar 

  15. D. Richards, J. Phys. B: Atom. Mol. Phys. 20, 2171 (1987).

    Article  ADS  Google Scholar 

  16. Note: we think here e.g. of Arnold diffusion in many-dimensional oscillator systems, B. V. Chirikov, Phys. Rep. 52, 263 (1979). See also D. Shepelyansky, in Chaotic Behavior in Quantum Systems, ed. G. Casati (Plenum, New York, 1985), who reports preliminary two frequency calculations for n3ω > 1, which is above the range of scaled frequencies in the present work.

    Google Scholar 

  17. D. Feldman, G. Otto, D. Petring and K. H. Welge, J. Phys. B: Atom. Mol. Phys. 19, 269 (1986).

    Article  ADS  Google Scholar 

  18. H. G. Muller, H. B. van Linden van den Heuvell and M. J. van der Wiel, J. Phys. B: Atom. Mol. Phys. 19, L733 (1986).

    Article  ADS  Google Scholar 

  19. S. S. Alimpiev, B. O. Zikrin, B. G. Sartakov and E. M. Khoklov, Zh. Eksp. Teor. Fiz. 83, 943 (1982) [Sov. Phys. JETP 56, 943 (1982)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moorman, L. et al. (1988). Two-Frequency Microwave Quenching of Highly Excited Hydrogen Atoms. In: Taylor, K.T., Nayfeh, M.H., Clark, C.W. (eds) Atomic Spectra and Collisions in External Fields. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1061-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1061-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8315-7

  • Online ISBN: 978-1-4613-1061-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics