Highly Excited Hydrogen Atoms in Strong Microwaves

  • J. E. Bayfield
  • D. W. Sokol
Part of the Physics of Atoms and Molecules book series (PAMO)


Consider an atom that is highly excited to a state with principal quantum number n near 60. Such an atom’s electron binding energy is a few meV. External electric fields of modest field strength, in the range 10–100 V/cm, can have such a strong influence on such atoms that they can be rapidly ionized, even within a few classical electron orbit periods. For microwave fields at near-ionizing strengths, many quantum states are coupled and the problem of energy absorption by the atom from the external field can be addressed as a nonlinear dynamics problem. As both quantum numbers and numbers of photon absorption/emission events can be large, a semiclassical picture based upon an underlying classical electron dynamics is expected to be useful. The problem when viewed classically is in the class of externally-driven nonlinear oscillators. This class of problems has much in common with the class of two coupled nonlinear oscillators, as one of the two is just replaced by an external oscillator of fixed amplitude an frequency. An excited hydrogen atom in a sufficiently strong static magnetic field exhibits electron motion involving a strong competition between Larmor precession in the plane perpendicular to the field and Coulombic motion along the field. This is two coupled nonlinear motions, as in two coupled nonlinear oscillators.


Microwave Field Ionization Probability Principal Quantum Number Rydberg Atom Diagonal Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E.Bayfield, Comments At. Mol. Phys. 20, 245 (1987).CrossRefGoogle Scholar
  2. 2.
    J. E. Bayfield, in Quantum Measurement and Chaos, E. R. Pike, ed. (Plenum Press, New York, 1987).Google Scholar
  3. 3.
    G. Casati, I. Guarneri, and D. L. Shepelyansky, Phys. Rev. A36, No. 5 (1987), and references therein.Google Scholar
  4. 4.
    R. V. Jensen, in Atomic Physics 10, H. Narumi and I. Shimamura, eds., (North-Holland, Amsterdam, 1987), pages 319–322.Google Scholar
  5. 5.
    P. M. Koch, K. A. H. Van Leeuwen, O. Rath, D. Richards and R. V. Jensen, in The Physics of Phase Space, Y. S. Kim and W. W. Zachary, eds., Lecture Notes in Physics, No. 278, (Springer- Verlag, Berlin, 1987), pages 106–113.Google Scholar
  6. 6.
    R. Blumel and U. Smilansky, in Proceedings of the Conference on Chaos and Related Nonlinear Phenomena, I. Procaccia, ed. (Plenum Press, New York, 1987).Google Scholar
  7. 7.
    J. G. Leopold and D. Richards, J. Phys. B18, 3369 (1985).ADSGoogle Scholar
  8. 8.
    B. V. Chirikov, Phys. Reports 52, 263 (1979).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    E. J. Heller, Phys. Reve. A35, 1360 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. E. Bayfield, L. D. Gardner, Y. Z. Gulkok and S. D. Sharma, Phys. Rev. A24, 138 (1981).ADSGoogle Scholar
  13. 13.
    L. A. Bloomfield, R. C. Stoneman and T. F. Gallagher, Phys. Rev. Lett. 57, 2512 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    T. F. Gallagher, in Photons and Continuum States of Atoms and Molecules, N. K. Rahman, C. Guidotti and M. Allegrini, eds. (Springer- Verlag, Berlin, 1987), pages 2–7.Google Scholar
  15. 15.
    J. N. Bardsley and B. Sundaram, Phys. Rev. A32, 689 (1985).ADSGoogle Scholar
  16. 16.
    W. J. Meath and E. A. Power, J. Phys. B17, 763 (1984).ADSGoogle Scholar
  17. 17.
    P. M. Koch, in Rydberg States of Atoms and Molecules, R. F. Stebbings and F. B. Dunning, eds. (Cambridge University Press, New York, 1983).Google Scholar
  18. 18.
    J. E. Bayfield and L. A. Pinnaduwage, Phys. Rev. Lett. 54, 313 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    J. N. Bards ley, B. Sundaram, L. A. Pinnaduwage and J. E. Bayfield, Pʼnys. Rev. Lett. 56., 1007 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    G. Casati, B. V. Chirikov, D. L. Shepelyansky and I. Guarneri, Phys. Reports, (1987).Google Scholar
  21. 21.
    T. Dittrich and R. Graham, Europhys. Lett.4, 263 (1987), and reference therein.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. E. Bayfield
    • 1
  • D. W. Sokol
    • 1
  1. 1.Department of Physics and AstronomyUniversity of PittsburghPittsburghUSA

Personalised recommendations