Noble Gas Atoms in Strong DC Electric Fields

  • Rudolf Ch. Ziegelbecker
  • Laurentius Windholz
Part of the Physics of Atoms and Molecules book series (PAMO)


The general behavior of atomic levels in a d.c. electric field was already outlined by Bethe,1 but the Stark effect never reached the same importance as the Zeeman effect. The “state of the art” in investigating atoms and molecules in electric fields 11 years ago is described by Ryde.2


Quantum Number Radial Function Excited Electron Principal Quantum Number Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bethe, Quantenmechanik der Ein- und Zweielektronenprobleme, in Handbuch der Pʼnysik XXIV/1, eds. H. Geiger and K. Scheel (Springer, Berlin, 1933).Google Scholar
  2. 2.
    N. Ryde, Atoms in Electric Fields (Almqvist and Wiksell, Stockholm, 1976).Google Scholar
  3. 3.
    D. A. Harmin, “Electric Field Effects in Rydberg Atoms”, Comments At. Mol. Phys. 15, 281 (1985).Google Scholar
  4. 4.
    T. Bergeman, “Numeric Calculations of the Stark Effect in Neutral Hydrogen”, in H-Workshop-Session held in Los Alamos, Nov. 1981.Google Scholar
  5. 5.
    L. Windholz, “Stark Effect of Ar I-Lines”, Phys. Scripta 21, 67 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    H. Jäger and L. Windholz, “Stark Effect of Ne I-Lines (I)”, Phys. Scripta 29, 344 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    R. Ch. Ziegelbecker, “Berechnung des Starkeffekts von Edelgasatomen unter Annahme reiner jl-Kopplung am Beispiel des Ne I”, thesis, Technische Universität Graz (1986).Google Scholar
  8. 8.
    R. D. Cowan, The Theory of Atomic Structure and Spectra, eds. D. H. Sharp and L. M. Simmons, Jr. (University of California Press, Berkeley-Los Angeles-London, 1981).Google Scholar
  9. 9.
    R. Ch. Ziegelbecker, H. Jäger and L. Windholz, “Stark Effect of Ne I-Lines (II)”, Phys. Scripta (to be published).Google Scholar
  10. 10.
    Ch. E. Moore, “Atomic Energy Levels I”, Circular of the National Bureau of Standards 467 (U.S. Government Printing Office, Washington, D.C., 1949).Google Scholar
  11. 11.
    G. Racah, “On a New Type of Vector Coupling in Complex Spectra”, Phys. Rev. 61, 537 (1942).ADSGoogle Scholar
  12. 12.
    Ch. Froese-Fischer, “The Hartree-Fock Method for Atoms” (Wiley, New York, 1977).Google Scholar
  13. 13.
    S. Feneuille, M. Klapisch, E. Koenig and S. Liberman, “Determination Theorique des Probabilities de Transition 2p53p-2p53s dans le Spectre du Neon I”, Physica 48, 571 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    W. Gordon, “Zur Berechnung der Matrizen beim Wasserstoffatom”, Ann. Pʼnys. 2 (5), 1031 (1929).ADSCrossRefGoogle Scholar
  15. 15.
    B. L. Van der Waerden, “Group Theory and Quantum Mechanics”, eds. B. Eckmann, J. K. Moser and J. K. Van der Waerden (Springer, Heidelberg-New York, 1977).Google Scholar
  16. 16.
    A. R. Edmonds, “Angular Momentum in Quantum Mechanics”, eds. E. Wigner and R. Hofstadter (Princeton University Press, Princeton, 1957).Google Scholar
  17. 17.
    R. Ch. Ziegelbecker and B. Schnizer, “Calculation of the Stark Effect of Neon I Using jl Coupled Wavefunctions”, to appear in Z. Phys. D (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Rudolf Ch. Ziegelbecker
    • 1
  • Laurentius Windholz
    • 1
  1. 1.Institut für ExperimentalphysikTechnische Universität GrazGrazAustria

Personalised recommendations