Advertisement

Structure and Operation of the EGS4 Code System

  • Walter R. Nelson
  • David W. O. Rogers
Part of the Ettore Majorana International Science Series book series (EMISS, volume 38)

Abstract

The EGS** system of computer codes is a general purpose package for the Monte Carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies above a few keV up to several TeV. The current version is the EGS4 Code System by Nelson, Hirayama and Rogers1, which is more commonly referred to as EGS4.

Keywords

Track Length Radiation Transport Monte Carlo Result User Code Cascade Shower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. R. Nelson, H. Hirayama and D. W. O. Rogers, “The EGS4 Code System”, Stanford Linear Accelerator Center report SLAC-265 (1985).Google Scholar
  2. 2.
    R. L. Ford and W. R. Nelson, “The EGS Code System: Computer Programs for the Monte Carlo Simulation of Electromagnetic Cascade Showers (Version 3)”, Stanford Linear Accelerator Center report SLAC-210 (1978).Google Scholar
  3. 3.
    W. R. Nelson, “Solution of the Electromagnetic Cascade Shower Problem by Analog Monte Carlo Methods-EGS”, in Computer Techniques in Radiation Transport and Dosimetry, edited by W. R. Nelson and T. M. Jenkins, ( Plenum Press, New York, 1980 ).CrossRefGoogle Scholar
  4. 4.
    W. R. Nelson, “Application of EGS to Detector Design in High Energy Physics”, in Computer Techniques in Radiation Transport and Dosimetry, edited by W. R. Nelson and T. M. Jenkins, ( Plenum Press, New York, 1980 ).CrossRefGoogle Scholar
  5. 5.
    W. R. Nelson, “Application of EGS and ETRAN to Problems in Medical Physics and Dosimetry”, in Computer Techniques in Radiation Transport and Dosimetry, edited by W. R. Nelson and T. M. Jenkins, ( Plenum Press, New York, 1980 ).CrossRefGoogle Scholar
  6. 6.
    J. C. Butcher and H. Messel, “Electron Number Distribution in Electron-Photon Showers”, Phys. Rev. 112 (1958) 2096.ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. C. Butcher and H. Messel, “Electron Number Distribution in Electron-Photon Showers in Air and Aluminum Absorbers”, Nucl. Phys 20 (1960) 15.CrossRefMATHGoogle Scholar
  8. 8.
    A. A. Varfolomeev and I. A. Svetlolobov, “Monte Carlo Calculations of Electromagnetic Cascade with Account of the Influence of the Medium on Bremsstrahlung”, Sov. Phys. JETP 36 (1959) 1263.Google Scholar
  9. 9.
    H. Messel, A. D. Smirov, A. A. Varfolomeev, D. F. Crawford and J. C. Butcher, “Radial and Angular Distributions of Electrons in Electron-Photon Showers in Lead and in Emulsion Absorbers”, Nucl. Phys. 39 (1962) 1.CrossRefGoogle Scholar
  10. 10.
    H. Messel and D. F. Crawford, Electron-Photon Shower Distribution Function, ( Pergamon Press, Oxford, 1970 ).Google Scholar
  11. 11.
    C. D. Zerby and H. S. Moran, “Studies of the Longitudinal Development of High-Energy Electron-Photon Cascade Showers in Copper”, Oak Ridge National Laboratory report ORNL-3329 (1962).Google Scholar
  12. 12.
    C. D. Zerby and H. S. Moran, “A Monte Carlo Calculation of the Three-Dimensional Development of High-Energy Electron-Photon Cascade Showers”, Oak Ridge National Laboratory report ORNL-TM-422 (1962).Google Scholar
  13. 13.
    C. D. Zerby and H. S. Moran, “Studies of the Longitudinal Development of High-Energy Electron-Photon Cascade Showers”, J. Appl. Phys. 34 (1963) 2445.ADSCrossRefGoogle Scholar
  14. 14.
    R. G. Alsmiller, Jr. and H. S. Moran, “Electron-Photon Cascade Calculations and Neutron Yields from Electrons in Thick Targets”, Oak Ridge National Laboratory report ORNL-TM-1502 (1966).Google Scholar
  15. 15.
    R. G. Alsmiller, Jr. and H. S. Moran, “The Electron-Photon Cascade Induced in Lead by Photons in the Energy Range 15 to 100 MeV”, Oak Ridge National Laboratory report ORNL-4192 (1968).Google Scholar
  16. 16.
    R. G. Alsmiller, Jr. and H. S. Moran, “Calculation of the Energy Deposited in Thick Targets by High-Energy (1 GeV) Electron-Photon Cascades and Comparison with Experiment”, Nucl. Sci. Eng. 38 (1969) 131.Google Scholar
  17. 17.
    R. G. Alsmiller, Jr. and J. Barish, “Energy Deposition by 45-GeV Photons in H, Be, Al, Cu, and Ta”, Oak Ridge National Laboratory report ORNL-4933 (1974).Google Scholar
  18. 18.
    R. G. Alsmiller, Jr., J. Barish and S. R Dodge, “Energy Deposition by High-Energy Electrons (50 to 200 MeV) in Water”, Nucl. Instr. Meth. 121 (1974) 161.CrossRefGoogle Scholar
  19. 19.
    H. H. Nagel and C. Schlier, “Berechnung von Elecktron-Photon-Kaskaden in Blei für eine Primärenergie von 200 MeV”, Z. Phys. 174 (1963) 464.ADSCrossRefGoogle Scholar
  20. 20.
    H. H. Nagel, “Die Berechnung von Elektron-Photon-Kaskaden in Blei mit Hilfe der Monte-Carlo Methode”, Inaugural-Dissertation zur Erlangung des Doktor- grades der Hohen Mathematich-Naturwissenschaftlichen Fakultät der Rheinischen Freidrich-Wilhelms-Universität zu Bonn, 1964.Google Scholar
  21. 21.
    H. H. Nagel, “Elektron-Photon-Kaskaden in Blei: Monte-Carlo Rechnungen fr Primärelektronenenergien zwischen 100 und 1000 MeV”, Z. Phys. 186 (1965) 319; English translation in Stanford Linear Accelerator Center report SLAC-TRANS-28 (1965).Google Scholar
  22. 22.
    U. Völkel, “Elektron-Photon-Kaskaden in Blei für Primärteilchen der Energie 6 GeV”, DESY report DESY-65/6 (July 1965); English translation in Stanford Linear Accelerator Center report SLAC-TRANS-41 (1966).Google Scholar
  23. 23.
    U. Völkel, “A Monte-Carlo Calculation of Cascade Showers in Copper Due to Primary Photons of 1 GeV, 3 GeV, and 6 GeV, and 6-GeV Bremsstrahlung Spectrum”, DESY report DESY-67/16 (1967).Google Scholar
  24. 24.
    D. F. Nicoli, “The Application of Monte Carlo Cascade Shower Generation in Lead”, submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science at the Massachusetts Institute of Technology, 1966.Google Scholar
  25. 25.
    H. Burfeindt, “Monte-Carlo Rechnung für 3 GeV-Schauer in Blei”, DESY report DESY-67/24 (1967).Google Scholar
  26. 26.
    The Monte Carlo Method, edited by Y. A. Shreider, (Pergamon Press, New York, 1966).Google Scholar
  27. 27.
    A. J. Cook, “Mortran3 User’s Guide”, SLAC Computation Research Group technical memorandum CGTM 209 (1983).Google Scholar
  28. 28.
    P. Darriulat, E. Gygi, M. Holder, K. T. McDonald, H. G. Pugh, F. Schneider and K. Tittel, “Conversion Efficiency of Lead for 30–200 MeV Photons”, Nucl. Instr. Meth. 129 (1975) 105.CrossRefGoogle Scholar
  29. 29.
    R. L. Ford, B. L. Bero, R. L. Carrington, R. Hofstadter, E. B. Hughes, G. I. Kirkbridge, L. H. O’Neill and J. W. Simpson, “Performance of Large, Modularized NaI(Tl) Detectors”, Stanford High Energy Physics Laboratory report HEPL-789 (September 1976); presented at the IEEE 1976 Nuclear Science Symposium and Scintillation and Semiconductor Symposium (New Orleans, LA, October 20 – 22, 1976 ).Google Scholar
  30. 30.
    C. J. Crannell, H. Crannell, R. R. Whitney and H. D. Zeman, “Electron-Induced Cascade Showers in Water and Aluminum”, Phys. Rev. 184 (1969) 426.ADSCrossRefGoogle Scholar
  31. 31.
    Private communication with H. Hirayama (calculations made at SLAC during the early part of 1983).Google Scholar
  32. R. G. Alsmiller Jr., “High-Energy (< 18 GeV) Muon Transport Calculations and Comparison with Experiment”, Nucl. Instr. Meth. 71 (1969) 121.CrossRefGoogle Scholar
  33. 33.
    G. Clement, “Differential Path Length of the Photons Produced by an Electron of Very High Energy in a Thick Target”, C. R. Acad. Sci. 257 (1963) 2971; English translation in Stanford Linear Accelerator Center report SLAC-TRANS-141 (1972).Google Scholar
  34. 34.
    R. C. Beach, “The Unified Graphics System for FORTRAN 77: Programming Manual”, SLAC Computation Research Group technical memorandum CGTM 203 (November 1985 revision).Google Scholar
  35. 35.
    R. Cowan and W. R. Nelson, “Use of 3-D Color Graphics with EGS”, Comp. Phys. Comm. 45 (1987) 485.ADSCrossRefGoogle Scholar
  36. 36.
    R. Cowan and W. R. Nelson, “Producing EGS4 Shower Displays With Unified Graphics”, Stanford Linear Accelerator report SLAC-TN-87-3 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Walter R. Nelson
    • 1
  • David W. O. Rogers
    • 2
  1. 1.Radiation Physics GroupStanford Linear Accelerator CenterStanfordUSA
  2. 2.Physics Division NationalResearch Council of CanadaOttawaCanada

Personalised recommendations