Skip to main content

Evidence for the Role of Proteinases in Uremic Catabolism

  • Conference paper
Proteases II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 240))

Abstract

Characteristical feature of patients ith acute renal failure is a negative nitrogen balance with often dramatic wasting of skeletal muscle (1). In any major catabolic event, it is likely, that skeletal muscle provides an increased supply of amino acids for the enhanced metabolic activity of the liver. This loss of tissue may represent an adaptive response helping to meet the metabolic needs of the stressed organism. On the other hand, this loss of protein stores is probably a major contributing factor of the persistantly high mortality in patients with hypercatabolic acute renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.I. Feinstein, M.J. Blumenkrantz, M. Healy, A. Koffler, H. Silberman, S.G. Massry and J.D. Kopple, Clinical and metabolic responses to parenteral nutrition in acute renal failure, Medicine 60: 124 (1981)

    Article  PubMed  CAS  Google Scholar 

  2. G.H.A. Clowes, B.C. George, C.A. Villee and C.A. Saravis, Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma, New Engl. J. Med. 308: 545 (1983)

    Article  PubMed  Google Scholar 

  3. E.I. Feinstein, J.D. Kopple, H. Silberman and S.G. Massry, Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure, Kidney Int. 24: 319 (1983)

    Google Scholar 

  4. H. Umezawa and T. Aoyagi, Acoivities of proteinase inhibitors of microbial origin, in Proteinases in Mammalian Cells and Tissues, edited by Barrett, A.J., Amsterdam, North-Holland, pp 637 (1977)

    Google Scholar 

  5. A. Stracher, E.B. McGowan and S.A. Shafiq, Muscular dystrophy: Inhibition of degeneration in vivo with protease inhibitors, Science 200: 50 (1978)

    Article  PubMed  CAS  Google Scholar 

  6. B. McCallister, W.W. Lacy and P.E. Whlliams, Leupeptin inhibits adrenocorticotropic hormone-induced protein breakdown in the conscious dog, J. Clin. Invest. 83: 390 (1983)

    Article  Google Scholar 

  7. P. Libby and A.L. Goldberg, Leupeptin, a protease inhibitor decreases protein degradation in normal and diseased muscles, Science 199: 534 (1978)

    Article  PubMed  CAS  Google Scholar 

  8. R.M. Schaefer, M. Teschner, P. Kulzer, J. Leibold, G. Peter and A. Heidland, Evidence for reduced catabolism by the antiglucocorticoid RU 38486 in acutely uremic rats, Am. J. Nephrol. 7: 127 (1987)

    Article  PubMed  CAS  Google Scholar 

  9. M. Mayer, R. Amin and E. Schafrir, Rat myofibrillar protease: Enzyme properties and adaption changes in conditions of muscle protein degradation, Arch. Biochem. Biophys. 161; (1974)

    Google Scholar 

  10. P. Bohley, H. Kirschke, J. Langner, M. Miche, S. Riemann, Z. Salama, E. Schon, B. Wiederanders and S. Ansorge, Intracellular protein turnover, in Biochemical Functions of Proteinases, edited by Holzer H., Tschesche, H. Berlin, Heidelberg, New York, Springer, pp 17 (1979)

    Google Scholar 

  11. H. Reinauer and B. Dahlmann, Alkaline proteinases in sekeltal muscle, in Biochemical Functions of Proteinases, edited by Holzer H., Tschesche, H., Berlin, Heidelberg, New York, Springer, pp 94 (1979)

    Google Scholar 

  12. V.R. Young and R.N. Munro, N-Methylhistidine (3-methylhistidine) and muscle protein turnover: an overview, Fed. Proc. 37: 2291 (1978)

    PubMed  CAS  Google Scholar 

  13. B. Dahlmann, C. Schroeter, L. Rerbertz and R. Reinauer, Myofibrillar protein degradation and muscle proteinases in nromal and diabetic rats, Biochem. Med. 21: 33 (1979)

    Article  PubMed  CAS  Google Scholar 

  14. O.Z. Lernau, S. Nissan, B. Neufeld and M. Mayer, Myofibrillar protease activity in muscle tissue from patients in catabolic conditions, Eur. J. Clin. Invest. 10: 357 (1980)

    Article  PubMed  CAS  Google Scholar 

  15. D.C. Park, M.E. Parson and R.J. Pennington, Evidence for mast cell origin of proteinase in skeletal muscle homogenates, Biochem. Soc. Trans. 1: 730 (1973)

    CAS  Google Scholar 

  16. T. Noguchi and M. Kandatsu, Some properties of alkaline protease in rat muscle compared with that in peritoneal cavity cells, Agric. Biol. Chem. 40: 927 (1976)

    Article  CAS  Google Scholar 

  17. N. Mayorek, A. Pinson and M. Mayer, Intracellular proteolysis in rat cardiac and skeletal muscle cells in culture, J. Cell. Physiol. 98: 587 (1979)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Schaefer, R.M., Teschner, M., Peter, G., Leibold, J., Kulzer, P., Heidland, A. (1988). Evidence for the Role of Proteinases in Uremic Catabolism. In: Hörl, W.H., Heidland, A. (eds) Proteases II. Advances in Experimental Medicine and Biology, vol 240. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1057-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1057-0_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8313-3

  • Online ISBN: 978-1-4613-1057-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics