The Wiener-Hopf Equation in the Nevanlinna and Smirnov Algebras and Ultra-Distributions

  • V. S. Vladimirov

Abstract

1. The Wiener-Hopf equation on the semi-axis
$$\phi \left( \xi \right) = \int\limits_0^\infty {{\text{k}}\left( {\xi - \xi \prime} \right)\phi \left( {\xi \prime} \right){\text{d}}\xi \prime + {\text{f}}\left( \xi \right),\quad \xi \mathop > \limits_ = 0} $$
(1.1)
and the associated Riemann-Hilbert problem on a real axis
$$\rho \left( {\text{x}} \right)\phi ^ + \left( {\text{x}} \right) = \psi ^ - \left( {\text{x}} \right) + {\text{F}}\left( {\text{x}} \right)\quad {\text{a}}{\text{.e}}{\text{.}}\;{\text{on}}\;\mathbb{R}$$
(1.2)
has been investigated by many mathematicians starting from N. Wiener and E. Hopf [1] under various assumptions about kernel k and function ρ. An important contribution to their theory has been made by V. A. Fok [2], N. I. Muschelishvili [3, 4], I. N. Vekua [24], N. P. Vekua [3, 5], V. A. Ambartsumian [6], F. D. Gahov [7], S. Chandrasekhar [8], V. V. Sobolev [9], M. G. Krein [10, 11], I. I. Daniluk [26], B. V. Bojarskii [27], I. B. Simonenko [28], G. S. Litvinchuk [29], M. V. Maslennikov [12], N. B. Engibarjan [13], V. M. Kokilashvili and V. A. Paatashvili [30] and others.

Keywords

Hull Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Wiener and E. Hopf, Sitz. Berliner Akademi Wiss., 696–706, (1931).Google Scholar
  2. 2.
    V. A. Fok, Matem. sb., 14, 56, NO. 1–2, 3–50, (1944), (in Russian).Google Scholar
  3. 3.
    N. I. Muschelishvili and N. P. Vekua, Trudy Tbilis. Mathem. Inst. XII, 1–46, (1943), (in Russian).Google Scholar
  4. 4.
    N. I. Muschelishvili, “Singular Integral Equations”, Moscow, (1962), (in Russian).Google Scholar
  5. 5.
    N. P. Vekua, “Systems of Singular Integral Equations”, Moscow, (1970), (in Russian).Google Scholar
  6. 6.
    V. A. Ambartsumian, Nauchye trudy, v. I, Erevan, (1960), (in Russian).Google Scholar
  7. 7.
    F. D. Gahov, “Boundary Value Problems”, Moscow, (1977), (in Russian).Google Scholar
  8. 8.
    S. Chandrasekhar, “Radiative transfer”, Oxford, (1950).MATHGoogle Scholar
  9. 9.
    V. V. Sobolev, “Radiative Transfer in Stars and Planets of Atmospheres”, Moscow, (1956), (in Russian).Google Scholar
  10. 10.
    M. G. Krein, Uspehi Mathem. Nauk, v. 13, No. 5, 3–12, (1958), (in Russian).MathSciNetGoogle Scholar
  11. 11.
    I. C. Gohberg and M. G. Krein, Uspehi Mathem. Nauk, v. 13, No. 5, 3–72, (1958), (in Russian).MathSciNetGoogle Scholar
  12. 12.
    M. V. Maslennikov, Trudy Steklov Institute of Mathematics, t. 97 3–133, (1968), (in Russian).MathSciNetGoogle Scholar
  13. 13.
    L. G. Arabajan, N. B. Engibarjan, Itogi nauki i tekhniki, ser. Mathematical Analysis, t. 22, Moscow, VINITI, 174–244, (1984), (in Russian).Google Scholar
  14. 14.
    V. S. Vladimirov, Doklady AN SSSR, t. 293, NO. 2, 278–283, (1987), (in Russian).MATHGoogle Scholar
  15. 15.
    V. S. Vladimirov, Izvestia AN USSR, ser. Mathematics, v. 51, No. 4. 747–784, (1987), (in Russian).Google Scholar
  16. 16.
    A. B. Aleksandrov, Lectures Notes in Mathem., 864, 1–89, (1981).CrossRefGoogle Scholar
  17. 17.
    V. S. Vladimirov and I. V. Volovich, Theoretical and Mathematical Physics, t. 54, No. 1, 8–22, (1983), (in Russian).MathSciNetCrossRefGoogle Scholar
  18. 18.
    S. V. Swedenko, Itogi nauki i tekhniki, ser. Mathematical Analysis, t. 23, Moscow, VINITI, 3–124, (1985), (in Russian).Google Scholar
  19. 19.
    F. M. Golusin, “Geometrical Theory of Functions of Complex Variable”, Moscow, (1966), (in Russian).Google Scholar
  20. 20.
    I. I. Privalov, “Boundary Properies of Analitical Functions”, Moscow, (1950), (in Russian).Google Scholar
  21. 21.
    N. K. Nikol’skii, “Treatise of the Shift Operator. Spectral Function Theory”, Springer-Verlag, (1986).Google Scholar
  22. 22.
    H. Komatsu, J. Fac. Sci. Univ. Tokyo, Section IA, 20, 25–105, (1973).MathSciNetMATHGoogle Scholar
  23. 23.
    H. Komatsu, J. Fac. Sei. Univ. Tokyo, Section IA, 24, 607–628, (1977).MathSciNetMATHGoogle Scholar
  24. 24.
    I. N. Vekua, “Generalized Analitical Functions”, Moscow, (1959), (in Russian).Google Scholar
  25. 25.
    I. N. Vekua, “New Method for Solution of Elliptic Equations”, Moscow - Leningrad, (1948).Google Scholar
  26. 26.
    I. I. Daniluk, “Nonregular Boundary Value Problem on Plane”, Moscow, 1975.Google Scholar
  27. 27.
    B. V. Bojarskii, Doklady AN USSR, t. 126, 695–698, (1959), (in Russian).Google Scholar
  28. 28.
    I. B. Simonenko, Izvestia AN USSR, ser. Mathematics, v. 28, No. 2, 277–306, (1964).MathSciNetMATHGoogle Scholar
  29. 29.
    G. S. Litvinchuk, “Boundary Value Problems and Singular Integral Equations with Shift”, Moscow, (1977), (in Russian).MATHGoogle Scholar
  30. 30.
    V. M. Kokilashvili and V. A. Paatishvili, “Differential Equations”, XVI, No. 9, 1650–1659, (1980), (in Russian).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • V. S. Vladimirov
    • 1
  1. 1.Steklov Institute of MathematicsMoscowRussia

Personalised recommendations