Skip to main content

Abel Summability for a Distribution Sampling Theorem

  • Chapter

Abstract

Let F(w)be an L2 function with compact support on [-σ,σ]; let T = π/σ and f(t) be the Fourier transform of F(w). Then the well-known sampling theorem says

$${\text{f}}\left( {\text{t}} \right) = \sum\limits_{{\text{n}} = - \infty }^\infty {{\text{f}}\left( {{\text{nT}}} \right)\frac{{\sin \sigma \left( {{\text{t}} - {\text{nT}}} \right)}} {{\sigma \left( {{\text{t}} - {\text{nT}}} \right)}}},$$

where convergence is uniform in ℝ1. If F(w) is now a distribution with compact support on [-σ,σ] the Fourier transform is still a function but the series does not converge necessarily. However it is shown, under mild conditions of F(w), that the series is Abel summable, i.e.

$${\text{f}}\left( {\text{t}} \right) = \mathop {\lim }\limits_{{\text{r}} \to l^ - } \sum\limits_{{\text{n}} = - \infty }^\infty {{\text{r}}^{\left| {\text{n}} \right|} \,{\text{f}}\left( {{\text{nT}}} \right)\frac{{\sin \sigma \left( {{\text{t}} - {\text{nT}}} \right)}} {{\sigma \left( {{\text{t}} - {\text{nT}}} \right)}}}$$

where the convergence is uniform on bounded sets in ℝ1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Antosik, T. Mikusiński, and R. Sikorski, “Theory of Distributions”, PWN-Warsaw, (1973).

    MATH  Google Scholar 

  2. L. L. Campbell, Sampling theorem for the fourier transform of a distribution with bounded support, S1AM J. Applied Math., 16 626–636 (1968).

    Article  Google Scholar 

  3. R. F. Hoskins and J. De Sousa Pinto, Sampling expansions for functions band-limited in the distributional sense, SIAM J. Appl. Math., 44, 605–610 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. J. Lee, Characterization of band-limited functions and processes, Info, and Control, 31, 258–271 (1976).

    Article  MATH  Google Scholar 

  5. E. Pfaffelhuber, Sampling series for band-limited generalized functions, IEEE Trans, on Info. Theory, IT-17, 650–654 (1971)

    Article  MathSciNet  Google Scholar 

  6. C. E. Shannon, Communications in the presence of noise, Proc. IRE, 37, 10–21 (1949).

    Article  MathSciNet  Google Scholar 

  7. G. Walter, Sampling band-limited functions of polynomial growth, SIAM J. Math. Anal., (1988).

    Google Scholar 

  8. G. Walter, Fourier Series and Analytic Representations of Distributions, SIAM Review, 12, 272–276 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Zygmund, “Trigonometric Series”, I & II, Cambridge Press, Cambridge (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Walter, G.G. (1988). Abel Summability for a Distribution Sampling Theorem. In: Stanković, B., Pap, E., Pilipović, S., Vladimirov, V.S. (eds) Generalized Functions, Convergence Structures, and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1055-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1055-6_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8312-6

  • Online ISBN: 978-1-4613-1055-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics