On the Space \(\upsilon _{{\text{L}}^{\text{q}} }^{'\,^{\left( {{\text{M}}_{\text{p}} } \right)} } \), q ∈ [1,∞]

  • S. Pilipović


We shall present in this paper mainly the results for q = 2. Namely, we shall present the results from [3 – 7] concerning the space of Beurling ultradistributions \(\upsilon _{{\text{L}}^2 }^{'\,^{\left( {{\text{M}}_{\text{p}} } \right)} } \). In our investigations we follow the Komatsu approach to spaces of ultradistrinutions [2], so for the notions and the basic results of ultradistribution theory we refer the reader to this paper.


Holomorphic Function Space Versus Inverse Fourier Transformation Hilbert Transformation Cauchy Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Floret, J. Wloka, “Einführung in die Theorie der lokalkonvexen Räume”, Lect. Not. Math. 71, Springer, Berlin – Heidelberg – New York, (1968).MATHGoogle Scholar
  2. 2.
    H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20, 25–105 (1973).MathSciNetMATHGoogle Scholar
  3. 3.
    S. Pilipović, Hilbert transformation of Beurling ultradistributions, Rend. Math. Univ. Padova, 77, 1–13 (1987).MATHGoogle Scholar
  4. 4.
    S. Pilipović, On the convolution in the space \(\upsilon _{{\text{L}}^2 }^{'\,^{\left( {\text{M}} \right)} } \), Rend. Math. Univ. Padova, 78, (1987) (to appear).Google Scholar
  5. 5.
    S. Pilipović, Boundary value representation for a class of Beurling ultradistributions, Port. Math, (to appear)Google Scholar
  6. 6.
    S. Pilipović, Ultradistributional boundary values for a class of holomorphic functions, Comm. Math. Univ. St. Pauli, (to appear).Google Scholar
  7. 7.
    S. Pilipović, The generalized Cauchy-Bochner representation for elements of \(\upsilon _2^{'\,^{\left( {\text{M}} \right)} } \) and pairs of Hilbert transformations (to appear).Google Scholar
  8. 8.
    D. C. Champeney, “A handbook of Fourier theorems”, Cambridge Univ. Press, Cambridge – New York – New Rochelle – Melbourne – Sydney, (1987).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. Pilipović
    • 1
  1. 1.Institute of MathematicsUniversity of Novi SadNovi SadYugoslavia

Personalised recommendations