Advertisement

Negative Ion Resonance Electron Scattering from Oriented, Physisorbed O2

  • R. E. Palmer
  • P. J. Rous
  • R. F. Willis
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

The physisorption of diatomic molecules on a crystalline solid surface at low temperature provides a means of orientating the molecular axis and thus studying low energy electron scattering from an oriented molecule. The cross-section for vibrational excitation of one monolayer of O2 on graphite at 25K has a peak near 9eV electron energy. The angular distribution of vibrationally inelastic electrons has been measured; comparison with calculated distributions, which include interference effects arising from multiple elastic electron scattering within the molecular layer, allows us to determine the orientation of the O2 molecule on the surface and to identify the partial wave content of the resonance. The dominant partial wave (pπ) is consistent with the 2Πu compound state but not the 4Σu.

Keywords

Angular Distribution Partial Wave Vibrational Excitation Molecular Axis Electron Energy Loss Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    George J. Schulz, Rev. Mod. Phys. 4:423 (1973).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. E. Demuth, D. Schmeisser and Ph. Avouris, Phys. Rev. Lett. 1:1166 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    L. Sanche and M. Michaud, Phys. Rev. Lett. 1:1008 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    D. Schmeisser, J. E. Demuth and Ph. Avouris, Phys. Rev. B22:4857 (1982).ADSGoogle Scholar
  5. 5.
    L. Sanche and M. Michaud, Phys. Rev. B27:3856 (1983).ADSGoogle Scholar
  6. 6.
    J. E. Demuth, Ph. Avouris and D. Schmeisser, J. Electron Spec. 22:163 (1983).CrossRefGoogle Scholar
  7. 7.
    L. Sanche and M. Michaud, Phys. Rev. B30:6078 (1984).Google Scholar
  8. 8.
    R. E. Palmer, J. F. Annett and R. F. Willis, J. Electron Spec. 38:317 (1986)CrossRefGoogle Scholar
  9. R. E. Palmer, PhD Thesis, University of Cambridge, 1986.Google Scholar
  10. 9.
    A. Gerber and A. Herzenberg, Phys. Rev.B1:6219 (1985).ADSGoogle Scholar
  11. 10.
    J. W. Gadzuk, J. Chem. Phys. 11:3982 (1983).ADSCrossRefGoogle Scholar
  12. 11.
    M. Krauss, D. Neumann, A. C. Wahl, G. Das and W. Zemke, Phys. Rev. A7:69 (1973)ADSGoogle Scholar
  13. G. Das, A. C. Wahl, W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 68:4252 (1978).ADSCrossRefGoogle Scholar
  14. 12.
    G. H. Dunn, Phys. Rev. Lett.8:62 (1962).ADSCrossRefGoogle Scholar
  15. 13.
    L. Sanche, Phys. Rev. Lett.51:1638 (1984)Google Scholar
  16. R. Azria, L. Parenteau and L. Sanche, Phys. Rev. Lett. 52:638 (1987).ADSCrossRefGoogle Scholar
  17. 14.
    S. F. Wong, M. J. W. Boness and G. J. Schulz, Phys. Rev. Lett. 31:969 (1973).ADSCrossRefGoogle Scholar
  18. 15.
    Michael F. Toney and Samuel C. Fain, Jr., Phys. Rev. B36:1248 (1987).Google Scholar
  19. 16.
    R. E. Palmer, P. J. Rous, J. L. Wilkes and R. F. Willis, Phys. Rev. Lett. to be published in Jan. or Feb. 1988.Google Scholar
  20. 17.
    R. F. W. Bader, W. H. Henneker and P. E. Cade, J. Chem. Phys. 4:3341 (1967).ADSCrossRefGoogle Scholar
  21. 18.
    Michael F. Toney and Samuel C. Fain, Jr., Phys. Rev. B30:1115 (1984).ADSGoogle Scholar
  22. 19.
    P. A. Heiney, P. W. Stephens, S. G. J. Mochrie, J. Akimitsu, R. J. Birgeneau and P. M. Horn, Surface Sci. 125:539 (1983).ADSCrossRefGoogle Scholar
  23. 20.
    R. E. Palmer, P V Head and R. F. Willis, Rev. Sci. Instrum. 58:1118 (1987).ADSCrossRefGoogle Scholar
  24. 21.
    M. S. Dresselhaus and G. Dresselhaus, Advanced in Phys. 30:139 (1981).ADSCrossRefGoogle Scholar
  25. 22.
    R. E. Palmer, J. L. Wilkes and R. F. Willis, J. Electron Spec. 44:229 (1987).CrossRefGoogle Scholar
  26. 23.
    J. W. Davenport, W. Ho and J. R. Schrieffer, Phys. Rev. B2.:3115 (1978).ADSGoogle Scholar
  27. 24.
    Because the O2 layer is incommensurate with the graphite surface, we are not able to calculate multiple scattering in the substrate. However, the effective reflectivity of graphite (seen by the overlayer) that we calculate at 8.5eV is less than 1%, so this is not an important omission.Google Scholar
  28. 25.
    J. B. Pendry, “Low Energy Electron Diffraction”, Academic Press, London, 1974.Google Scholar
  29. 26.
    D. Dill and J. L. Dehmer, J. Chem. Phys. 61:692 (1974).ADSCrossRefGoogle Scholar
  30. 27.
    P. J. Rous, R. E. Palmer and R. F. Willis, submitted to Phys. Rev. B. Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. E. Palmer
    • 1
  • P. J. Rous
    • 1
  • R. F. Willis
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations