Electronic Structure of Laterally Restricted Systems

  • Frank Stern
Part of the NATO ASI Series book series (NATO ASI, volume 179)

Abstract

This lecture* is intended to describe some of the structures being built to achieve quasi-one-dimensional behavior of electrons in semiconductors and some of the methods being used to calculate energy levels and charge densities for such structures. No attempt is made to describe the growing body of theoretical and experimental work on optical and transport properties. A basic knowledge of heterostructure physics, as presented in other lectures in this volume, is presupposed.

Keywords

Dioxide Argon Milling GaAs Posit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Ando, A. B. Fowler, and F. Sternr, Electronic properties of two- dimensional systems, Rev, Mod. Phys. 54:437 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    A. B. Fowler, A. Hartstein and R. A. Webb, Conductance in restricted-dimensionality accumulation layers, Phys. Rev. Lett. 48:196 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    C. C. Dean and M. Pepper, The transition from two- to one-dimensional electronic transport in narrow silicon accumulation layers, J. Phys. C 15:L1287 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews and G. J. Davics, One-dimensional conduction in the 2D electron gas of a GaAs-Al-GaAs heterojunction, Phys. Rev. Lett. 56:1198 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Gate-controlled transport in narrow GaAs/AlxGa1-xAs heterostructures, Phys. Rev. B 34:5635 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    M. Frei, D. C. Tsui and G. Weimann, Gate-controlled one-dimensional transport in high-mobility GaAs/AlGaAs heterostructures, Bull. Am. Phys. Soc. 32:889 (1987).Google Scholar
  7. 7.
    A. C. Warren, D. A. Antoniadis and H. I. Smith, Quasi one-dimensional conduction in multiple, parallel inversion lines, Phys. Rev. Lett. 56:1858 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    R. G. Wheeler, K. K. Choi and R. Wisnieff, Quasi-one-dimensional effects in submicron width silicon inversion layers, Surf. Sci. 142:19 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    R. F. Kwasnick, M. A. Kastner, J. Melngailis and P. A. Lee, Nonmonotonic variations of the conductance with electron density in ~70-nm-wide inversion layers, Phys. Rev. Lett. 52:224 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    W. J. Skocpol, L. D. Jackel, E. L. Hu, R. E. Howard and L. A. Fetter, One-dimensional localization and interaction effects in narrow (0.1-µm) silicon inversion layers, Phys. Rev. Lett. 49:951 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    W. J. Skocpol, L. D. Jackel, R. E. Howard, H. G. Craighead, L. A. Fetter, P. M. Mankiewich, P. Grabbe and D. M. Tennant, Magneto-conductance and quantized confinement in narrow silicon inversion layers, Surf. Sci. 142:14 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    H. van Houten, B. J. van Wees, M. G. J. Heijman and J. P. Andre, Submicron conducting channels defined by shallow mesa etch in GaAs-AlGaAs heterojunctions, Appl. Phys. Lett. 49:1781 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    K. K. Choi, D. C. Tsui and K. Alavi, Experimental determination of the edge depletion width of the two-dimensional electron gas in GaAs/AlxGa1-xAs, Appl. Phys. Lett. 50:110 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    M. A. Reed, R. T. Bate, K. Bradshaw, W. M. Duncan, W. R. Frensley, J. W. Lee and H. D. Shih, Spatial quantization in GaAs-AlGaAs multiple quantum dots, J. Vac. Sci. Technol. B 4:358 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead and M. C. Tamargo, Optical spectroscopy of ultrasmall structures etched from quantum wells, Appl. Phys. Lett. 49:1043 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    H. Sakaki, Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures, Jpn. J. Appl. Phys. 19:L735 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    P. M. Petroff, A. C. Gossard, R. A. Logan, and W. Wiegmann, Toward quantum well wires: Fabrication and optical properties, Appl. Phys. Lett. 49:1275 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    Y. C. Chang, L. L. Chang, and L. Esaki, A new one-dimensional quantum well structure, Appl. Phys. Lett. 47:1324 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    J. Cibert, P. M. Petroff, G. J. Dolan, S. J. Pearton, A. C. Gossard and J. H. English, Optically detected carrier confinement to one and zero dimensions in GaAs quantum well wires and boxes, Appl. Phys. Lett. 49:1275 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    H. Temkin, G. J. Dolan, M. B. Panish and S. W. G. Chu, Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes, Appl. Phys. Lett. 50:413 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    P. F. Maldague, One-dimensional behavior in narrow-gate silicon MOS devices, Bull. Am. Phys. Soc. 26:787 (1981).Google Scholar
  22. 22.
    A. Ya. Shik, Calculations relating to a semiconductor structure with a quasione-dimensional electron gas, Fiz. Tekh. Poluprovodn. 19:1488 (1985) [Sov. Phys. Semicond. 19:915 (1985)].Google Scholar
  23. 23.
    A. C. Warren, D. A. Antoniadis, and H. I. Smith, Semi-classical calculation of charge distributions in ultra-narrow inversion lines, IEEE Electron Dev. Lett. EDL-7:413 (1986).CrossRefGoogle Scholar
  24. 24.
    W. Y. Lai and S. Das Sarma, Ground-state variational wave function for the quasi-one-dimensional semiconductor wire, Phys. Rev. B 33:8874 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    J. A. Brum, G. Bastard, L. L. Chang and L. Esaki, Energy levels in some quasi uni-dimensional semiconductor heterostructures, in: “Proceedings of the 18th International Conference on the Physics of Semiconductors,” Vol. 1, p. 396, World Scientific, Singapore (1987).Google Scholar
  26. 26.
    J. A. Brum, G. Bastard, L. L. Chang and L. Esaki, Energy levels in quasi uni-dimensional semiconductor heterostructures, Superlattices and Microstructures 3:47 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    S. E. Laux and F. Stern, Electron states in narrow gate-induced channels in Si, Appl. Phys. Lett. 49:91 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    S. E. Laux and A. C. Warren, Self-consistent calculation of electron states in narrow channels, Technical Digest of International Electron Devices Meeting, Los Angeles, December, 1986, p. 567.Google Scholar
  29. 29.
    S. E. Laux, Numerical methods for calculating self-consistent solutions of electrons states in narrow channels, NASECODE V: The Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits, Dublin, June, 1987 (to be published by Boole Press, Dublin).Google Scholar
  30. 30.
    S. E. Laux, D. J. Frank and F. Stern, Quasi-one-dimensional electron states in a split-gate GaAs-AlGaAs heterostructure, Seventh International Conference on Electronic Properties of Two-Dimen-sional Systems, Santa Fe, July, 1987 (to be published in Surf.Sci.).Google Scholar
  31. 31.
    D. A. Poole, M. Pepper, K.-F. Berggren, G. Hill and H. W. Myron, Magneto-resistance oscillations and the transition from three-dimensional to two-dimensional conduction in a gallium arsenide field effect transistor at low temperatures, J. Phys. C 15:L21 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    K.-F. Berggren, T. J. Thornton, D. J. Newson and M. Pepper, Magnetic depopulation of 1D subbands in a narrow 2D electron gas in a GaAs:AlGaAs heterojunction, Phys. Rev. Lett. 57:1769 (1986).ADSCrossRefGoogle Scholar
  33. K. B. Wong, M. Jaros and J. P. Hagon, Confined electron states in GaAs-Ga1-xAlxAs quantum wires, Phys. Rev. B 35:2463 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Frank Stern
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations