Skip to main content

Off-Diagonal Long-Range Order in the Quantum Hall Effect

  • Chapter
Interfaces, Quantum Wells, and Superlattices

Part of the book series: NATO ASI Series ((volume 179))

Abstract

We saw in my previous lecture on collective excitations that it was quite useful to study analogies between the fractional quantum Hall effect (FQHE) and superfluidity and superconductivity in films. Superfluids and superconductors are characterized by a spontaneously broken gauge symmetry and an associated order parameter. The purpose of this lecture is to investigate the question of whether or not there exists an order parameter which describes the FQHE state, possibly associated with some type of symmetry breaking1–8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, Phys. Rev. B 28:2264 (1983).

    Article  ADS  Google Scholar 

  2. R. Tao and Yong-Shi Wu, Phys. Rev. B 30:1097 (1984).

    Article  ADS  Google Scholar 

  3. D. J. Thouless, Phys. Rev, B 31:8305 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. M. Girvin, Chapter 10, in: “The Quantum Hall Effect”, R. E. Prange and S. M. Girvin, ed., Springer-Verlag, New York (1987).

    Google Scholar 

  5. S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett. 58:1252 (1987).

    Article  ADS  Google Scholar 

  6. N. Read, Bull. Am. Phys. Soc. 32:923 (1987) and (unpublished).

    Google Scholar 

  7. The apparent symmetry breaking associated with the discrete degeneracy of the ground state in the Landau gauge2 is an artifact of the toroidal geometry3,8 and is not at issue here.

    Google Scholar 

  8. F. D. M. Haldane, Chapter 8, in: “The Quantum Hall Effect”, R. E. Prange and S. M. Girvin, ed., Springer-Verlag, Mew York (1987).

    Google Scholar 

  9. S. M. Girvin, A. H. MacDonald and P. M. Platzman, Phys. Rev. Lett. 54:581 (1985)

    Article  ADS  Google Scholar 

  10. S. M. Girvin, A. H. MacDonald and P. M. Platzman, Phys. Rev. B 33:2481 (1986)

    Article  ADS  Google Scholar 

  11. S. M. Girvin, Chapter 9, in: “The Quantum Hall Effect”, R. E. Prange and S. M. Girvin, ed., Springer-Verlag, New York (1987).

    Google Scholar 

  12. S. Kivelson, C. Kallin, D. P. Arovas and J. R. Schrieffer, Phys. Rev. Lett. 56:873 (1986) and (unpublished).

    Article  ADS  Google Scholar 

  13. S. T. Chui, T. M. Hakim and K. B. Ma, Phys. Rev. B 33:7110 (1986); S. T. Chui (unpublished).

    Article  ADS  Google Scholar 

  14. G. Baskaran, Phys. Rev. Lett. 56:2716 (1986) and (unpublished).

    Article  ADS  Google Scholar 

  15. D. H. Lee, G. Baskaran and S. Kivelson, Bull. Am. Fhys. Soc. 32:923 (1987) and (unpublished).

    Google Scholar 

  16. R. B. Laughlin, Phys. Rev. Lett. 50:1395 (1983)

    Article  ADS  Google Scholar 

  17. R. B. Laughlin, Chapter 7, in: “The Quantum Hall Effect”, R. E. Prange and S. M. Girvin, ed., Springer-Verlag, New York (1987).

    Google Scholar 

  18. R. P. Feynman, Phys. Rev. 91:1291 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. C. N. Yang, Rev. Mod. Phys. 34:694 (1962).

    Article  ADS  Google Scholar 

  20. P. W. Anderson, “Basic Notions of Condensed Matter Physics,” Benjamin, Menlo Park (1984)

    Google Scholar 

  21. P. W. Anderson, Rev. Mod. Phys. 38:298 (1966).

    Article  ADS  Google Scholar 

  22. J. V. José, L. P. Kadanoff, S. Kirkpatrick and D. R. Nelson, Phys. Rev. B 16:1217 (1977).

    Article  ADS  Google Scholar 

  23. S. K. Ma, “Statistical Mechanics,” World Scientific, Singapore (1985).

    Book  MATH  Google Scholar 

  24. This is true except in the vortex core where the order parameter must vanish.

    Google Scholar 

  25. S. M. Girvin, Phonons, Rotons and Fractionally-Charged Vortices in the Quantum Hall Effect, in: “Interfaces, Quantum Wells and Superlattices,” Chapter 17, C. Richard Leavens and Roger Taylor eds., Plenum, New York (1988).

    Google Scholar 

  26. B. I. Halperin, Helv. Phys. Acta 56:75 (1983).

    Google Scholar 

  27. The parameter m is an irrelevant constant in this context but will prove useful when we look at the plasma corresponding specifically to the mth Laughlin state.

    Google Scholar 

  28. E. Brézin, D. R. Nelson and A. Thiaville, Phys. Rev. B 31:7124 (1985).

    Article  ADS  Google Scholar 

  29. F. Wilczek, Phys. Rev. Lett. 49:957 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  30. D. P. Arovas, J. R. Schrieffer, F. Wilczek and A. Zee, Nucl. Phys. B 251:117 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Arovas, J. R. Schrieffer and F. Wilczek, Phys. Rev. Lett. 53:722 (1984).

    Article  ADS  Google Scholar 

  32. S. Kivelson (private communication) has pointed out that the statement in refs. 5 and 26 that this gauge field corresponds to λ (instead of λ/2) flux quanta per particle is incorrect. One must be careful to count the phase change associated with the motion of the flux tube in the presence of the other charge as well as the motion of the charge in the presence of the other flux tube. This minor error has no effect on the conclusions of either ref. 5 or 26.

    Google Scholar 

  33. We loosely (and not strictly correctly) refer to this as condensation because of the slow power-law decay even though the largest eigenvalue \(\lambda \equiv \int {{d^2}z\tilde \rho \left( {z,z'} \right)}\) of the density matrix diverges only for m ≤ 4. See Yang’s discussion16 of this point.

    Google Scholar 

  34. J. B. Kogut, Rev. Mod. Phys. 51:659 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  35. J. L. Cardy and E. Rabinovici, Nucl. Phys. B 205:1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  36. J. L. Cardy, ibid. 205:17 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. A. Trugman and S. Kivelson, Phys. Rev. B 31:5280 (1985).

    Article  ADS  Google Scholar 

  38. D. J. Yoshioka, Phys. Rev. B 29:6833 (1984).

    Article  ADS  Google Scholar 

  39. S. Kivelson (private communication).

    Google Scholar 

  40. Only particles and their zeros near the boundary can contribute (because the particle must be inside and one of its zeros outside, or vice versa). Kivelson assumes that the value of the contour integral is gaussian distributed with mean square value proportional to the perimeter. The expectation value of the exponential then, follows from its second cumulant.

    Google Scholar 

  41. E. A. Rezayi, (private communication).

    Google Scholar 

  42. P. W. Anderson, Phys. Rev. 112:1900 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  43. P. W. Anderson, Phys. Rev. 130:439 (1963).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. P. W. Higgs, Phys. Lett. 12:132 (1964)

    Article  ADS  Google Scholar 

  45. P. W. Higgs, Phys. Rev. Lett. 13:508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  46. P. W. Higgs, Phys. Rev. 145:1156 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Moriyasu, “An Elementary Primer for Gauge Theory,” World Scientific, Singapore (1983).

    Google Scholar 

  48. F. D. M. Haldane and L. Chen, Phys. Rev. Lett. 53:2591 (1984).

    Article  ADS  Google Scholar 

  49. Polynomial terms of the form (|Ψ|2–1)2 which enforce the non-zero value of Ψ have not been explicitly included in the action in eq. (25). These will not be necessary in the FQHE where |Ψ|2 is defined by the total particle density42.

    Google Scholar 

  50. In a superconductor we do not envision that |Ψ|2 represents the total particle density since only a tiny fraction of the particles (those near the Fermi energy) actually take part in the pairing. We see from Laughlin’s wave function however that the FQHE ground state is very much different. Every electron is coupled to every other on an equal footing. Every electron is a source of m zeros seen by all the others. This is at least a hand-waving justification for the interpretation of |Ψ|2 as the total charge density.

    Google Scholar 

  51. For simplicity I am only considering the parent Laughlin states at filling factor v = 1/m and ignore the hierarchy of rational fractional states8.

    Google Scholar 

  52. The value of the coefficient in the linear term can be obtained from the previous argument using the singular gauge transformation. There is a unique value of the gauge flux per particle which leads to ODLRO (namely the value which allows the gauge field e to cancel on the average the vector potential of the applied field).

    Google Scholar 

  53. This is where the handedness described earlier appears.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Girvin, S.M. (1988). Off-Diagonal Long-Range Order in the Quantum Hall Effect. In: Leavens, C.R., Taylor, R. (eds) Interfaces, Quantum Wells, and Superlattices. NATO ASI Series, vol 179. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1045-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1045-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8307-2

  • Online ISBN: 978-1-4613-1045-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics