Density of States and Electron-Phonon Coupling in Two-Dimensional Electron Systems at High Magnetic Fields

  • J. P. Eisenstein
Part of the NATO ASI Series book series (NATO ASI, volume 179)


One of the central problems in the two-dimensional electron field1 is the determination of the Landau level density of states. This quantity plays an essential role in determining almost all physically measurable properties. For example, understanding the striking characteristics of the quantum Hall effect requires the existence of localized electronic states somewhere in the gap region between Landau levels2. How many such states are there and how are they distributed? Considerable effort, both theoretical and experimental, has been devoted to this problem over the last several years and much progress has been made. In these lectures I will discuss in detail two sets of experiments on 2D electron systems (2DES) in which the density of states (DOS) is directly observable. The first example will be our measurements of the static magnetization of the 2DES at high magnetic fields3. Being an equilibrium thermodynamic variable, the magnetization depends only on the DOS. The strength of the observed oscillations in the magnetic moment as a function of field (deHaas-van Alphen effect) gives a direct measure of the broadening of the Landau levels. Our observations have led to the conclusion, now widely corroborated, that a significant density of states exists in the gap region between Landau levels. The second example concerns our experiments on the thermal conductivity at high magnetic fields of multi-layer heterostructures that contain 2D electron systems4. Although these are really phonon transport measurements, the DOS of the 2DES enters through the coupling of the phonons to the electrons. Striking magneto-oscillations are observed in the temperature gradient generated by an applied heat flux.


High Magnetic Field Landau Level Quantum Hall Effect Magnetic Length Background Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    J. P. Eisenstein, H. L. Stornier, V. Narayanamurti, A. Y. Cho, A. C. Gossard and C. W. Tu, Phys. Rev. Lett. 55, 875 (1985),ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Eisenstein, A. C. Gossard and V. Narayanamurti, to be published in Proceedings of Seventh International Conference on Electronic Properties of Two-Bimensional Systems, Santa, Fe, 1987.Google Scholar
  5. 5.
    T. Ando and Y. Uemura, J. Phys. Soc. Jpn., 36, 959 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    W. Zawadzki, in Two-Dimensional Systems, Heterostructwres, and Superlattices, eds. G. Bauer, F. Kuchar and H. Heinrich, Springer Series in Solid State Sciences, vol 53 (Springer-Verlag, New York, 1984).Google Scholar
  7. 7.
    R. F. Kazarinov and S. Luryi, Phys. Rev. B 25, 7626 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    H. Aoki and T. Ando, Phys. Rev. Lett 54, 831 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    R. Dingle, H. L. Stornier, A. C Gossard and W. Wiegmann, Appl. Phys. Lett. 7, 665 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    H. L. Stormer, J. P. Eisenstein, A. C. Gossard, W. Wiegmann and K. Baldwin, Phys. Rev. Lett. 56, 85 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. English, A. C. Gossard, H. L. Stormer and EL W. Baldwin, Appl. Phys. Lett. 50, 1826 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    J. P. Eisenstein, Appl. Phys. Lett. 46, 695 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    D. C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. B 25, 1405 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    J. P. Eisenstein, H. L. Stormer, V. Narayanamurti and A. C Gossard, Superlatt and Microstruc. 1, 11 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    J. P. Eisenstein, unpublished.Google Scholar
  16. 16.
    E. Gornik, R. Lassnig, G. Strasser, H. L. Stormer, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    E. Stahl, D. Weiss, G. Weimann, K. v. Klitzing and K. Ploog, J. Phys. C 18, L783 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    D. Weiss, E. Stahl, G. Weimann, K. Ploog and K. v. Klitzing, Electronic Properties of Two-Dimensional Systems, ed. T. Ando (Elsevier 1986) p. 285.Google Scholar
  19. 19.
    H. P. Wei, A. M. Chang, D. C. Tsui and M. Razeghi, Phys. Rev. B 32, 7016 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    J. K. Wang, J. H. Campbell, D. C. Tsui and A. Y. Cho, Bull. Am. Phys. Soc. 32, 462 (1987).Google Scholar
  21. 21.
    T. P. Smith, B. B. Goldberg, P. J. Stiles and M. Heiblum, Phys. Rev. B 32, 2696 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    V. Mosser, D. Weiss, K. v. Klitzing, K. Ploog and G. Weimann, Sol. State Commun. 58, 5 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    R. T. Zeller, F. F. Fang, B. B. Goldberg, S. L. Wright, and P. J. Stiles, Phys. Rev. B 33, 1529 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    D. Weiss, V. Mosser, V. Gudmundsson, R. R. Gerhardts and K. v. Klitzing, Sol. St. Commun. 62, 89 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    S. Das Sarma and Frank Stern, Phys. Rev. B 32, 8442 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    T. Ando and Y. Murayama, J. Phys. Soc. Jpn. 54, 1519 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    W. Cai and C. S. Ting, Phys. Rev B 33, 3967 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    Vidar Gudmundsson and Rolf R. Gerhardts, Phys. Rev B 35, 8005 (1987).ADSCrossRefGoogle Scholar
  29. 29.
    T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).ADSCrossRefGoogle Scholar
  30. 30.
    M. Paalanen, D. C. Tsui and J. C. M. Hwang, Phys. Rev. Lett. 51, 2225 (1983).ADSGoogle Scholar
  31. 31.
    J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Jay, M Laviron, and P. Delescluse, Phys. Rev. B 32, 8126 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    T. Ando, J. Phys. Soc. Jpn. 43, 1616 (1977).CrossRefGoogle Scholar
  33. 33.
    Herbert Oji, Phys. Rev. B 29, 3148 (1984).CrossRefGoogle Scholar
  34. 34.
    T. C. Cetas, C. R. Tilford and C. A. Swenson, Phys. Rev. 174, 835 (1968).ADSCrossRefGoogle Scholar
  35. 35.
    M. N. Wybourne, C. G. Eddison and M. J. Kelly, J Phys. C 17, L607 (1984).ADSCrossRefGoogle Scholar
  36. 36.
    T. Klitsner and R. O. Pohl in “honon Scattering in Condensed Matter V”, Springer Series in Solid-State Sciences, vol. 68, eds. A. C. Anderson and J. P. Wolfe, Springer-Verlag, Berlin 1986.Google Scholar
  37. 37.
    J. E. VanCleve, T. Klitsner and R. O. Pohl in “Phonon Scattering in Condensed Matter V”, Springer Series in Solid-State Sciences, vol. 68, eds. A. C. Anderson and J. P. Wolfe, Springer-Verlag, Berlin 1986,CrossRefGoogle Scholar
  38. 38.
    N. C. Jarosik, J. P. Eisenstein and M. A. Chin, unpublished.Google Scholar
  39. 39a.
    For example, Peter J. Price, Surf. Sci. 143, 145 (1984) andGoogle Scholar
  40. 39b.
    W. Walukiewicz, H. E. Ruda, J. Lagowski and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).ADSCrossRefGoogle Scholar
  41. 40.
    P. J. Price, Annals of Physics 133, 217 (1981).ADSCrossRefGoogle Scholar
  42. 41.
    P. J. Price, J. Appl. Phys. 53, 6863 (1982).ADSCrossRefGoogle Scholar
  43. 42.
    M. Lax and J. P. Eisenstein, to be publishedGoogle Scholar
  44. 43.
    J. P. Eisenstein, Physica Scripta T14 (1986).Google Scholar
  45. 44.
    S. Luryi in “High Magnetic Fields in Semiconductor Physics”, ed. G. Landwehr, Springer Series in Solid State Sciences, vol. 71 (Springer-Verlag 1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. P. Eisenstein
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations