Evolution and Genetics of Epigean and Cave Astyanax fasciatus (Characidae, Pisces)

Support for the Neutral Mutation Theory
  • Horst Wilkens
Part of the Evolutionary Biology book series (EBIO, volume 23)


Notable progress in the biological sciences is occasionally made possible by the discovery of a species that exhibits a specialized way of life, but nevertheless will thrive and breed in the laboratory. In the study of cavernicolous animals, the Mexican characid fish Astyanax fasciatus has come to play a role equivalent to that of the fruit fly, Drosophila, in genetics.


Pineal Organ Species Flock Cave Population Alarm Substance Pigmentary Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P., 1980, Ontogenesis and morphological diversification, Am. Zool. 20:653–667.Google Scholar
  2. Alberch, P., 1982, Developmental constraints in evolutionary processes, in: Evolution and Development (J. Bonner, ed.), pp. 313–332, Springer-Verlag, New York.Google Scholar
  3. Alvarez, J., 1946, Revisión del genero Anoptichthys con descripción de una especia nueva (Pisces, Characidae), An. Esc. Nac. Cien. Biol. Mex. 4:263–282.Google Scholar
  4. Alvarez, J., 1947, Descripción de Anoptichthys hubbsi caracinido ciego de la Cueva de Los Sabinos, S. L. P. Rev. Soc. Mex. Hist. Nat. 8:215–219.Google Scholar
  5. Avise, J. C., and Seiander, R. K., 1972, Genetics of cave-dwelling fishes of the genus Astyanax, Evolution 26:1–19.CrossRefGoogle Scholar
  6. Banister, K. E., 1984, A subterranean population oi Garra barreimiae (Teleostei: Cyprinidae) from Oman, with comments on the concept of regressive evolution, J. Nat. Hist. 18:927–938.CrossRefGoogle Scholar
  7. Banister, K. E., and Bunni, M. K., 1980, A new blind fish from Iraq, Bull. Br. Mus. Nat. Hist. (Zool.) 38(3):151–158.Google Scholar
  8. Barr, T. C., 1968, Cave ecology and the evolution of troglobites, in: Evolutionary Biology (Th. Dobzhansky, M. K. Hecht, and W. C. Steere, eds.), Vol. 2, pp. 35–101, Plenum Press, New York.Google Scholar
  9. Bohn, S., 1986, Zur Schuppenreduktion bei Höhlenfischen, untersucht an cavernicolen Populationen won Astyanax fasciatus (Characidae, Pisces), Thesis, Fachbereich Biologie, Universität Hamburg, unpublished.Google Scholar
  10. Brace, L., 1963, Structural reduction in evolution, Am. Nat. 97:39–49.CrossRefGoogle Scholar
  11. Breder, C. M., Jr., 1943a Problems in the behavior and evolution of a species of blind cave fish, Trans. N. Y. Acad. Sci. 5:168–176.Google Scholar
  12. Breder, C. M., Jr., 1943b, A note on erratic viciousness in Astyanax mexicanus (Philippi), Copeia 2:82–84.CrossRefGoogle Scholar
  13. Breder, C. M., Jr., 1944, Ocular anatomy and light sensitivity studies on the blind fish from Cueva de los Sabinos, Mexico, Zoologica (N.Y.) 29:(13):131–143.Google Scholar
  14. Breder, C. M., Jr., and Gresser, E. B., 1941a, Correlations between structural eye defects and behavior in the Mexican blind characin, Zoologica (N.Y.) 26:123–131.Google Scholar
  15. Breder, C. M., Jr., and Gresser, E. B., 1941b, Further studies on the light sensitivity and behavior of the Mexican blind characin, Zoologica (N. Y.) 26:289–296.Google Scholar
  16. Breder, C. M., Jr., and Rasquin, P., 1943, Chemical sensory reactions in the Mexican blind characin, Zoologica (N. Y.) 28:169–200.Google Scholar
  17. Breder, C. M., Jr., and Rasquin, P., 1946, Comparative studies in the light sensitivity of blind characins from a series of Mexican caves, Bull. Am. Mus. Nat. Hist. 89:325–351.Google Scholar
  18. Breder, C. M., Jr., and Rosen, D. E., 1966, Modes of Reproduction in Fishes, Natural History Press, New York.Google Scholar
  19. Burchards, H., Dölle, A., and Parzefall, J., 1985, Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations, Behav. Processes 11:225–235.CrossRefGoogle Scholar
  20. Burgers, A. C. J., Bennink, P. J. H., and van Oordt, G. J., 1962, Investigations into the regulation of the pigmentary system of the blind Mexican cave fish, Anoptichthys jordani, Proc. K. Ned. Akad. Wet. 66:189–195.Google Scholar
  21. Bussing, W. A., 1985, Patterns of distribution of the Central American ichthyofauna, in: Topics in Geobiology (F. G. Stehle and S. D. Webb, eds.), Vol. 4, pp. 453–473, Plenum Press, New York.Google Scholar
  22. Cahn, P. H., 1958, Comparative optic development in Astyanax mexicanus and two of its blind cave derivatives, Bull. Am. Mus. Nat. Hist. 115:69–112.Google Scholar
  23. Cahn, P. H., 1958, Comparative optic development in Anoptichthys jordani (Characidae), J. Comp. Physiol. 143:369–374.Google Scholar
  24. Christiansen, K., 1985, Regressive evolution in Colembola, NSS Bull. 47(2):89–100.Google Scholar
  25. Coulombre, A. J., 1969, Regulation of ocular morphogenesis, Invest. Ophthalmol. 8(1):25–31.PubMedGoogle Scholar
  26. Culver, D. C., 1982, Cave Life. Evolution and Ecology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  27. Darwin, C., 1899, The Origin of Species by Means of Natural Selection, Murray, London.Google Scholar
  28. Dominey, W. J., 1984, Effects of sexual selection and life history on speciation: Species flocks in African cichlids and Hawaiian Drosophila, in: Evolution of Fish Species Flocks (A. A. Echelle and J. Kornfield, eds.), pp. 231–249, University of Maine Press, Orono, Maine.Google Scholar
  29. Durand, J. P., 1978, Phénomènes de convergences tissulaires et cytologiques, liés aux processus dégénératifs qui affectent l’oeil, chez deux téléostéens cavernicoles Astyanax (Anoptichthys) mexicanus (Characidae) et Lucifuga (Stygicola) dentatus (Ophidiidae), Bull. Soc. Zool. Fr. 103(3):269–274.Google Scholar
  30. Durand, J. P., 1979, Aspects ultrastructuraux des mécanismes de la rudimentation rétinienne chez l’Anoptichthys adulte forme cavernicole aveugle de l’Astyanax mexicanus (Characidae, Pisces), Can. J. Zool. 57(1):196–205.CrossRefGoogle Scholar
  31. Eigenmann, C. H., 1909, Cave vertebrates of America, Carnegie Inst. Wash. Publ. 104:1–241.Google Scholar
  32. Eigenmann, C. H., 1917, The american Characidae, Mem. Mus. Comp. Zool. 43:1–558.Google Scholar
  33. Erckens, W., and Martin, W., 1982a, Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator. I. Analyses of the time-control systems of an epigean river population, Z. Naturforsch. 37:1253–1265.Google Scholar
  34. Erckens, W., and Martin, W., 1982b, Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator. II. Features of time-controlled behaviour of a cave population and their comparison to an epigean ancestral form, Z. Naturforsch. 37:1266–1273.Google Scholar
  35. Ercolini, A., Berti, B., Chelazzi, L., and Messana, G., 1982, Researches on the phreatobic fishes of Somalia: Achievements and prospects, Mon. Zool. Ital. (N. S.) 17(Suppl.):219–241.Google Scholar
  36. Fack, H., and Wilkens, H., 1988, Eye reduction in hybrids and a naturally variable cave form of Astyanax fasciatus (Characidae, Pisces), Mém. Biospéol. 15: (in press).Google Scholar
  37. Franck, A., 1964, Vergleichende Untersuchungen am Höhlenfisch Anoptichthys antrobius und seinem oberirdischen Vorfahren Astyanax mexicanus, Zool. Anz. 172:95–107.Google Scholar
  38. Freyre, L. R., Padin, O. H., and Denegri, A. M., 1982, Metabolismo energetico de peces dulciaguicolas. 3. Astyanax eigenmanniorum (Cope, 1984), Limnobius 2:342–348.Google Scholar
  39. Fricke, D., 1988, Reaction to alarm substance in cave populations of Astyanax mexicanus (Characidae, Pisces), Ethology 76:305–308.CrossRefGoogle Scholar
  40. Frühbeis, B., 1984, Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani (Hubbs and Innes), Thesis, Fachbereich Zoologie, Johannes Gutenberg-Universität, Frankfurt.Google Scholar
  41. Fry, F. E. J., 1957, The aquatic respiration offish, in The Physiology of Fish (M. E. Brown, ed.), Vol. 1, pp. 1–63, Academic Press, New York.Google Scholar
  42. Gertychowa, R., 1970, Studies on the ethology and space orientation of the blind cave fish Anoptichthys jordani (Hubbs and Innes) (Characidae), Folia Biol. 18(l):9–69.Google Scholar
  43. Géry, J., 1977, Characoids of the World, TFH, Hong Kong.Google Scholar
  44. Gitschier, J., Wood, W. J., Tuddenham, E. G. D., Schuman, M. A., Goralka, T. M., Chen, E. Y., and Lawn, R. M., 1985, Detection and sequence of mutations in the factor VIII gene of haemophilias, Nature 315:427–430.PubMedCrossRefGoogle Scholar
  45. Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobiology 3:115–151.Google Scholar
  46. Greenwood, P. H., 1984, African cichlids and evolutionary theories, in: Evolution of Fish Species Flocks (A. A. Echelle and J. Kornfield, eds.), pp. 141–154, University of Maine Press, Orono, Maine.Google Scholar
  47. Grobbel, G., and Hahn, G., 1958, Morphologie und Histologie der Seitenorgane des augenlosen Höhlenfisches Anoptichthys jordani im Vergleich zu anderen Teleosteern, Z. Morphol. Ökol. Tiere 47:249–266.CrossRefGoogle Scholar
  48. Grunewald-Lowenstein, M., 1956, Influence of light and darkness on the pineal body in Astyanax mexicanus (Filippi), Zoologica 41:119–128.Google Scholar
  49. Hahn, G., 1960, Ferntastsinn und Strömungssinn beim augenlosen Höhlenfisch Anoptichihys jordani Hubbs and Innes im Vergleich zu anderen Teleosteern, Naturwissenschaften 47:611.CrossRefGoogle Scholar
  50. Haidane, J. B. S., 1935, The rate of spontaneous mutation of a human gene, J. Genet. 31:317–326.CrossRefGoogle Scholar
  51. Herwig, H. J., 1976, Comparative ultrastructural investigations of the pineal organ of the blind cave fish Anoptichthys jordani, and its ancestor, the eyed river fish, Astyanax mexicanus, Cell Tissue Res. 167:297–324.PubMedCrossRefGoogle Scholar
  52. Heusner, A. A., 1984, Biological similitude: Statistical and functional relationship in comparative physiology, Am. J. Physiol. 246:839–845.Google Scholar
  53. Hubbs, C. L., 1938, Fishes from the caves of Yucatan, Carnegie Inst. Wash. Publ. 491:261–295.Google Scholar
  54. Hubbs, C. L., and Innes, W. T., 1936, The first known blind fish of the family Characidae: A new genus from Mexico, Occ. Pap. Mus. Zool. Univ. Mich. 342:1–7.Google Scholar
  55. Humbach, J., 1960, Geruch und Geschmack bie den augenlosen Höhlenfischen Anoptichthys jordani Hubbs and Innes und Anoptichthys hubbsi Alvarez, Naturwissenschaften 47:551.CrossRefGoogle Scholar
  56. Hüppop, K., 1985, The role of metabolism in the evolution of cave animals, NSS Bull. 47(2):136–146.Google Scholar
  57. Hüppop, K., 1986a, Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): A comparison of epigean and hypogean populations, Environ. Biol. Fish. 17:299–308.CrossRefGoogle Scholar
  58. Hüppop, K., 1986b, Comparative early life history in surface and cave fish (Astyanax fasciatus), Bull. Zool. 35(Suppl.):104.Google Scholar
  59. Hüppop, K., 1987, Food-finding ability in cave fish (Astyanax fasciatus), Int. J. Speleol. 16(1–2):59–66.Google Scholar
  60. Hüppop, K., 1988a, Genetic analysis of oxygen consumption rate in cave and surface fish of Astyanax fasciatus (Characidae, Pisces), further support for the neutral mutation theory, Mém. Biospéol. 15: (in press).Google Scholar
  61. Hüppop, K., 1988b, Phänomene und Bedeutung der Energieersparnis beim Höhlensalmler Astyanax fasciatus, Thesis, Fachbereich Biologie, Universität Hamburg.Google Scholar
  62. Hüppop, K., and Wilkens, H., 1988, Genetics of egg yolk content in cave and surface Astyanax fasciatus (Characidae, Pisces), (in preparation).Google Scholar
  63. John, K. R., 1957, Observations on the behavior of blind and blinded fishes, Copeia 1957:123–132.CrossRefGoogle Scholar
  64. John, K. R., 1964, Illumination, vision, and schooling of Astyanax mexicanus (Filippi), J. Fish. Res. Board. Can. 21:1453–1473.CrossRefGoogle Scholar
  65. Kähling, J., 1961, Untersuchungen über den Lichtsinn und dessen Lokalisation bei dem Höhlenfisch Anoptichthys jordani Hubbs and Innes (Characidae), Biol. Zentr. albl. 80(40):439–451.Google Scholar
  66. Kane, T. C., and Richardson, R. C., 1985, Regressive evolution: An historical perspective, NSS Bull. 47(2):71–77.Google Scholar
  67. Kauffeld, J. E., 1954, Ctenobrycon spirulus fathers strange young, Aquarium 23:140–141.Google Scholar
  68. Kimura, M., 1987, Die Neutralitätstheorie der molekularen Evolution, Parey, Berlin. Kirby, R. F., Thompson, K. W., and Hubbs, C., 1977, Karyotypic similarities between the Mexican and blind tetras, Copeia 3:578–580.Google Scholar
  69. Kosswig, C., 1934, Über bislang unbekannte Sinnesorgane bei dem blinden Höhlenfisch Stygicola dentatus Poey, Verh. Dtsch. Zool. Ges. 1934:185–190.Google Scholar
  70. Kosswig, C., 1948, Genetische Beiträge zur Präadaptationstheorie, Istanbul Univ. Fen Fak Mecm. B 13:176–209.Google Scholar
  71. Kosswig, C., 1960a, Darwin und die degenerative Evolution, Abhandl. Verhandl. Naturwiss. Verein Hamburg N. F. 4:21–42.Google Scholar
  72. Kosswig, C., 1960b, Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren, Int. Rev. Ges. Hydrobiol. 45(4):493–512.Google Scholar
  73. Kosswig, C., 1963, Genetische Analyse konstruktiver und degenerativer Evolutionsprozesse, Z. Zool. Syst. Evolutions forsch. 1:205–239.CrossRefGoogle Scholar
  74. Kosswig, C., 1964, Polygenic sex determination, Experientia 20:190–199.PubMedCrossRefGoogle Scholar
  75. Kosswig, C., 1967, Über das Tempo evolutorischer Prozesse, Zool. Beitr. N. F. 13:441–450.Google Scholar
  76. Kosswig, C., and Öktay, M., 1955, Die Geschlechtsbestimmung bei den Xiphophorini. (Neue Tatsachen und neue Deutungen), Istanbul Univ. Fen Fak. Hidrobiol. B 2:133–156.Google Scholar
  77. Kratochwill, K., 1972, Tissue interaction during embryonic development: General properties, in: Tissue Interactions in Carcinogenesis (D. Tarin, ed.), pp. 1–47, Academic Press, New York.Google Scholar
  78. Kuhn, O., and Kähling, J., 1954, Augenrückbildung und Lichtsinn bei Anoptichthys jordani Hubbs and Innes, Experientia 10(9):385–393.PubMedCrossRefGoogle Scholar
  79. Lack, D., 1947, Darwin’s Finches, Cambridge University Press, Cambridge.Google Scholar
  80. Ladiges, W., 1968, Die Bedeutung ökologischer Faktoren für die Differenzierung der Cichliden des Tanganjika- und des Nyassa-Sees, Int. Rev. Ges. Hydrobiol. 52:339–352.CrossRefGoogle Scholar
  81. Lamprecht, G., and Weber, F., 1985, Time keeping mechanisms and their ecological significance in cavernicolous animals, NSS Bull. 47(2):147–162.Google Scholar
  82. Lande, R., 1981, The minimum number of genes contributing to quantitative variation between and within populations, Genetics 99:541–553.PubMedGoogle Scholar
  83. Langecker, T. G., 1988, Studies on the light reaction of epigean and cave populations of Astyanax fasciatus (Characidae, Pisces), Mém. Biospéol. 15: (in press).Google Scholar
  84. Langecker, T. G., H. Wilkens, D. Fricke, and P. Junge, in preparation, Introgressive hybridization and speciation in cave fish. Studies in the Pachon population of Astyanax fasciatus (Characidae, Pisces).Google Scholar
  85. Liem, K. J., and Kaufman, L. S., 1984, Intraspecific macroevolution: Functional biology of the polymorphic cichlid species Cichlasoma minckleyi, in: Evolution of Fish Species Flocks (A. A. Echelle and J. Kornfield, eds.), pp. 203–215, University of Maine Press, Orono, Maine.Google Scholar
  86. Lüling, K. H., 1953, Über die fortschreitende Augendegeneration des Anoptichthys jordani, Zool. Anz. 151:289–299.Google Scholar
  87. Lüling, K. H., 1954a, Untersuchungen am Blindfisch Anoptichthys jordani Hubbs and Innes (Characidae). I. Einige Beobachtungen über des Verhalten des Blindfisches A. jordani beim Laichen, Naturwiss. Rundschau 5:197–203.Google Scholar
  88. Lüling, K. H., 1954b, Untersuchungen am Blindfisch Anoptichthys jordani Hubbs and Inns (Characidae). II. Beobachtungen und Experimente an Anoptichthys jordani zur Prüfung der Einstellung zum Futter, zum Licht und zur Wasserturbulenz, Zool. Jahrb. Abt. Zool. Phys. 65:9–62.Google Scholar
  89. Lüling, K. H., 1955, Untersuchungen am Blindfisch Anoptichthys jordani, III. Vergleichend anatomisch-histologische Studien an den Augen des A. jordani, Zool. Jahrb. Abt. Anat. 74:401–477.Google Scholar
  90. Mitchell, R. W., 1969, A comparison to temperate and tropical cave communities, South-west. Nat. 14(1):73–88.CrossRefGoogle Scholar
  91. Mitchell, R. W., Russell, W. H., and Elliott, W. R., 1977, Mexican eyeless characin fishes, genus Astyanax: Environment, distribution, and evolution, Spec. Publ. Mus. Texas Tech. Univ. 12:1–89.Google Scholar
  92. Myerowitz, R., and Hogikyan, N. D., 1986, Different mutations in Ashkenazi Jewish and non-Jewish French Canadians with Tay-Sachs-Disease, Science 232:1646–1648.PubMedCrossRefGoogle Scholar
  93. Meyers, G. S., 1966, Derivation of the freshwater fish fauna of Central America, Copeia 1966:766–772.CrossRefGoogle Scholar
  94. Omura, Y., 1975, Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus, Cell Tissue Res. 160:99–112.PubMedCrossRefGoogle Scholar
  95. Parzefall, J., 1974, Rückbildung aggressiver Verhaltensweisen bei einer Höhlenform von Poecilia sphenops (Pisces, Poeciliidae), Z. Tierpsychol. 35:66–82.PubMedCrossRefGoogle Scholar
  96. Parzefall, J., 1983a, Field observations in epigean and cave populations of the Mexican characid Astyanax mexicanus (Pisces, Characidae), Mém. Biospéol. 10:171–175.Google Scholar
  97. Parzefall, J., 1983b, Genetisch bedingte Verhaltensänderungen bei Höhlentieren und ihren oberirdischen Vorfahren, Mitt. Hamb. Zool. Mus. Inst. 80:41–51.Google Scholar
  98. Parzefall, J., 1985, On the heredity of behavior patterns in cave animals and their epigean relatives, NSS Bull. 47(2):128–135.Google Scholar
  99. Parzefall, J., and Senkel, S., 1986, Schooling behaviour in cavernicolous fish and their epigean conspecifics, in: 9 Congres. International de Espeleologia, Barcelona, pp. 107–109.Google Scholar
  100. Parzefall, J., and Wilkens, H., 1972, Artbildung bei Höhlenfischen. Untersuchungen an zwei amerikanischen Synbranchiden, Z. Morphol. Tiere 73:63–79.CrossRefGoogle Scholar
  101. Peters, N., and Peters, G., 1966, Das Auge zweier Höhlenformen von Astyanax mexicanus Philippi (Characidae, Pisces), Wilhelm Roux’ Arch. Entwicklungsmech. Org. 157:393–414.CrossRefGoogle Scholar
  102. Peters, N., and Peters, G., 1968, Zur Genetischen Interpretation morphologischer Gesetz-mäßigkeiten der degenerativen Evolution, Z. Morphol. Tiere 62:211–244.CrossRefGoogle Scholar
  103. Peters, N., and Peters, G., 1973, Genetic problems in the regressive evolution of cavernicolous fish, in: Genetics and Mutagenesis of Fish (J. H. Schröder, ed.), pp. 188–201, Springer-Verlag, Berlin.Google Scholar
  104. Peters, N., Scholl, A., and Wilkens, H., 1975, Der Micos-Fisch, Höhlenfisch in statu nascendi oder Bastard? Ein Beitrag zur Evolution der Höhlentiere, Z. Zool. Syst. Evolutionsforsch. 13:110–124.CrossRefGoogle Scholar
  105. Pfeiffer, W., 1963, Vergleichende Untersuchungen über die Schreckreaktion und den Schreckstoff bei Ostariophysen, Z. Vergl. Physiol. 47:111–147.CrossRefGoogle Scholar
  106. Pfeiffer, W., 1966, Über die Vererbung der Schreckreaktion bei Astyanax (Characidae, Pisces), Z. Vererbungsl. 98:97–105.PubMedCrossRefGoogle Scholar
  107. Pfeiffer, W., 1967a, Schreckreaktion und Schreckstoffzellen bei Ostariophysi und Gonor-hynchiformes, Z. Vergl. Physiol. 56:380–396.CrossRefGoogle Scholar
  108. Pfeiffer, W., 1967b, Die Korrelation von Körperlänge, Augen-, Linsen- und Pupillengröße bei Hybriden aus Astyanax x Anoptichthys (Characidae, Pisces), Wilhelm Roux’ Arch. Entwicklungsmech. Org. 158:218–245.CrossRefGoogle Scholar
  109. Popper, A. N., 1970, Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus), Anim. Behav. 18:552–562.CrossRefGoogle Scholar
  110. Poulson, T. L., 1964, Animals in aquatic environments, animals in caves, in: Handbook of Physiology (D. B. Dill, ed.), pp. 749–771, American Physiological Society, Washington, D.C.Google Scholar
  111. Poulson, T. L., 1985, Evolutionary reduction by neutral mutations: Plausibility arguments and data from amblyopsid fishes and linyphiid spiders, NSS Bull. 47(2): 109–117.Google Scholar
  112. Proudfoot, N., 1980, Pseudogenes, Nature 286:840–841.PubMedCrossRefGoogle Scholar
  113. Rasquin, P., 1947, Progressive pigmentary regression in fishes associated with cave environments, Zoologica (N.Y.) 32:35–42.Google Scholar
  114. Rasquin, P., and Rosenbloom, L., 1954, Endocrine imbalance and tissue hyperplasia in teleosts maintained in darkness, Bull. Am. Mus. Nat. Hist. 104:363–425.Google Scholar
  115. Rieger, R., Michaelis, A., and Green, M. M., 1968, A Glossary of Genetics and Cytogenetics, Springer-Verlag Berlin.Google Scholar
  116. Röhler, R., 1974, Biologische Kybernetik, Teubner, Stuttgart.Google Scholar
  117. Romero, A., 1983, Introgressive hybridization in the Astyanaxfasciatus (Pisces, Characidae) population at the Cueva Chica, NSS Bull. 45(1):81–85.Google Scholar
  118. Romero, A., 1984, Behavior in an “intermediate” population of the subterranean-dwelling characid Astyanax fasciatus, Env. Biol. Fishes 10(3):203–207.CrossRefGoogle Scholar
  119. Romero, A., 1985a, Cave colonization by fish: Role of bat predation, Am. Midi. Nat. 113(1):7–12.CrossRefGoogle Scholar
  120. Romero, A., 1985b, Ontogenetic change in phototactic responses of surface and cave populations of Astyanax fasciatus (Pisces: Characidae), Copeia 1985(4): 1004–1011.CrossRefGoogle Scholar
  121. Romero, A., 1985c, Can evolution regress? NSS Bull. 47(2):86–88.Google Scholar
  122. Rosen, D. E., and Greenwood, P. H., 1976, A fourth neotropical species of synbranchid eel and the phylogeny and systematics of synbranchiform fishes, Bull. Am. Mus. Nat. Hist. 157(1):1–69.Google Scholar
  123. Sadoglu, P., 1955, A mendelian gene for albinism in natural cave fish, Experientia 13:394–395.CrossRefGoogle Scholar
  124. Sadoglu, P., 1957, Mendelian inheritance in the hybrids between the Mexican blind fishes and their overground ancestor, Verh. Dtsch. Zool. Ges. Graz. 1957:432–439.Google Scholar
  125. Sadoglu, P., 1975, Genetic paths leading to blindness in Astyanax mexicanus, in: Vision in Fishes, New Approaches in Research (M. A. Ali, ed.), pp. 419–426, Plenum Press, New York.Google Scholar
  126. Sadoglu, P., and McKee, A., 1969, A second gene that affects eye and body color in Mexican blind cave fish, J. Hered. 60(1):10–14.PubMedGoogle Scholar
  127. Schemmel, C., 1967, Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen, Z. Morphol. Tiere 61:255–316.CrossRefGoogle Scholar
  128. Schemmel, C., 1974a, Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen, Z. Zool. Syst. Evolutionforsch. 12:196–215.CrossRefGoogle Scholar
  129. Schemmel, C.,1974b, Ist die cavernicole Micos-Population von Astyanax mexicanus (Characidae, Pisces) hybriden Ursprungs?, Mitt. Hamb. Zool. Mus. Inst. 71:193–201.Google Scholar
  130. Schemmel, C., 1980, Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. Anoptichthys. An example of apparent monofactorial inheritance by polygenes, Z. Tierpsychol. 53:9–22.PubMedCrossRefGoogle Scholar
  131. Schindewolf, O. H., 1936, Paläontologie, Entwicklungslehre und Genetik, Bornträger, Berlin.Google Scholar
  132. Schlagel, S. R., and Breder, Jr., C. M., 1947, A study of the oxygen consumption of blind and eyed cave characins in light and darkness, Zoologica (N.Y.) 32:17–27.Google Scholar
  133. Schmatolla, E., 1972, Dependence of tectal neuron differentiation on optic innervation in teleost fish, J. Embryol. Exp. Morphol. 27:555–576.PubMedGoogle Scholar
  134. Schuppa, M., 1984, Morphometrische und meristische Untersuchungen an verschiedenen Astyanax-Populationen (Characidae) Mexikos, Thesis, Fachbereich Biologie, Universität Hamburg.Google Scholar
  135. Schutz, F., 1956, Vergleichende Untersuchungen über die Schreckreaktion bei Fischen und deren Verbreitung, Z. Vergl. Physiol. 38:84–135.CrossRefGoogle Scholar
  136. Sket, B., 1985, Why all cave animals do not look alike—A discussion on adaptive value of reduction processes, NSS Bull. 47(2):78–85.Google Scholar
  137. Steffanelli, A., 1954, The differentiation of optic lobe neurons in a blind cave teleost, Experientia 10:436–437.CrossRefGoogle Scholar
  138. Steven, D. M., 1963, The dermal light sense, Biol. Rev. 38:204–240.PubMedCrossRefGoogle Scholar
  139. Strauss, R. E., 1984, Allometry and functional feeding morphology in haplochromine cichlids, in: Evolution of Fish Species Flocks (A. A. Echelle and J. Kornfield, eds.), pp. 217–299, University of Maine Press, Orono, Maine.Google Scholar
  140. Tabata, M., 1982, Persistence of pineal photosensory function in blind cave fish, Astyanax mexicanus, Comp. Biochem. Physiol. 73A:125–127.Google Scholar
  141. Thines, G., 1960, Sensory degeneration and survival in cave fishes, Symp. Zool. Soc. Lond. 3:39–52.Google Scholar
  142. Thines, G., and Legrain, M., 1973, Effects of alarm substance on the behaviour of the cave fish Anoptichthys and Caecobarbus geertsi, Ann. Spéleol. 28:291–297.Google Scholar
  143. Thines, G., and Weyers, M., 1978, Responses locomotrices du poisson cavernicole Astyanax jordani (Characidae) à des signaux périodiques et apériodiques de lumière et de temperature, Int. J. Speleol. 10:35–55.Google Scholar
  144. Thines, G., Wolff, F., and Soffié, M., 1966, Etude comparative de l’activité du poisson cavernicole Anoptichthys antrobius et de son ancêtre épigé Astyanax mexicanus (Filippi), Ann. Soc. R. Zool. Belg. 96:61–115.Google Scholar
  145. Von Campenhausen, C., Weissert, R., and Riess, J., 1981, Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae), J. Comp. Physiol. 143:369–374.CrossRefGoogle Scholar
  146. Voneida, T. J., and Fish, S. E., 1984, Central nervous system changes related to the reduction of visual input in a naturally blind fish (Astyanax hubbsi), Am. Zool. 24:775–782.Google Scholar
  147. Wahl, E., 1976, Morphologisch-ökologische Untersuchungen zur Systematik der Lanao-Cypriniden.—Ein Beitrag zum Problem der intralakustrischen Speziation, Thesis, University of Hamburg.Google Scholar
  148. Weismann, A., 1889, Über den Rückschritt in der Natur, Ber. Naturforsch. Ges. Freiburg im Breisgau 1889:1–30.Google Scholar
  149. Weissert, R., and von Campenhausen, C., 1981, Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae), J. Comp. Physiol. 143:375–381.CrossRefGoogle Scholar
  150. Wiley, S., and Mitchell, R. W., 1971, A bibliography of the Mexican eyeless characin fishes of the genus Astyanax, in: Studies on the Cavernicole Fauna of Mexico (J. R. Reddell and R. W. Mitchell, eds.), Assoc. Mex. Cave Stud. Bull. 4:231–239.Google Scholar
  151. Wilkens, H., 1970a, Beiträge zur Degeneration des Auges bei Cavernicolen, Genzahl und Manifestationsart. Untersuchungen an mexikanischen Höhlenfischen, Z. Zool. Syst. Evolutionsforsch. 8:1–47.CrossRefGoogle Scholar
  152. Wilkens, H., 1970b, Der Bau des Auges cavernicoler Sippen von Astyanax fasciatus (Characidae, Pisces), Wilhelm Roux’ Arch. Entwicklungsmech. Org. 166:54–75.CrossRefGoogle Scholar
  153. Wilkens, H., 1970c, Beiträge zur Degeneration des Melaninpigments bei cavernocolen Sippen des Astyanax mexicanus (Filippi), Z. Zool. Syst. Evolutionsforsch. 8:173–199.CrossRefGoogle Scholar
  154. Wilkens, H., 1971, Genetic interpretation of regressive evolutionary processes: Studies on hybrid eyes of two Astyanax cave populations, Evolution 25(3):530–544.CrossRefGoogle Scholar
  155. Wilkens, H., 1972a, Zur phylogenetischen Rückbildung des Auges Cavernicoler: Untersuchungen an Anoptichthys jordani (= Astyanax mexicanus), Ann. Spéléol. 27:411–432.Google Scholar
  156. Wilkens, H., 1972b, Über Präadaptation für das Höhlenleben, untersucht am Laichverhalten ober- und unterirdischer Populationen des Astyanax mexicanus, Zool. Anz. 188:1–11.Google Scholar
  157. Wilkens, H., 1973, Über das phylogenetische Alter von Höhlentieren. Untersuchungen über die cavernicole Süsswasserfauna Yukatans, Z. Zool. Syst. Evolutionsforsch. 11:49–60.CrossRefGoogle Scholar
  158. Wilkens, H., 1976, Genotypic and phenotypic variability in cave animals. Studies on a phylogenetically young cave population of Astyanax mexicanus (Fillippi), Ann. Spéléol. 31:137–148.Google Scholar
  159. Wilkens, H., 1977, Die Rudimente des Rumpfkanals bei kavernicolen Populationen des Astyanax, Experientia 33:604.CrossRefGoogle Scholar
  160. Wilkens, H., 1980, Zur Problematik der Rudimentation, untersucht an der Ontogenie des Auges von Höhlenfischen (Astyanax mexicanus), Z. Zool. Syst. Evolutionsforsch. 18:232–238.CrossRefGoogle Scholar
  161. Wilkens, H., 1982, Regressive evolution and phylogenetic age: The history of colonization of freshwaters of Yucatan by fish and Crustacea, Assoc. Mex. Cave Stud. Bull. 8:237–243Google Scholar
  162. Wilkens, H., 1982, Regressive evolution and phylogenetic age: The history of colonization of freshwaters of Yucatan by fish and Crustacea, Texas Mem. Mus. Bull. 28:237–243.Google Scholar
  163. Wilkens, H., 1984, Zur Evolution von Polygensystemen: untersucht an ober- und unterirdischen Populationen des Astyanax mexicanus (Characidae, Pisces), Fortschr. Zool. Syst. Evolutionsforsch. Beiheft 3:55–71.Google Scholar
  164. Wilkens, H., 1985, The evolution of polygenic systems, studied on epigean and cave populations of Astyanax fasciatus (Characidae, Pisces), NSS Bull. 47(2):101–108.Google Scholar
  165. Wilkens, H., 1986, The tempo of regressive evolution: Studies of the eye reduction in stygobiont fishes and decapod crustaceans of the Gulf Coast and West Atlantic region, Stygologia 2(1,2):130–143.Google Scholar
  166. Wilkens, H., 1987, Genetic analysis of evolutionary processes, Int. J. Speleol. 16(1–2):33–57.Google Scholar
  167. Wilkens, H., in preparation, Genetics of guanin loss in cave fish.Google Scholar
  168. Wilkens, H., and Burns, R. J., 1972, A new Anoptichthys cave population (Characidae, Pisces), Ann. Spéléol. 27:263–270.Google Scholar
  169. Wilkens, H., and Hüppop, K., 1986, Sympatric speciation in cave fish? Studies on a mixed population of epi- and hypogean Astyanax (Characidae, Pisces), Z. Zool. Syst. Evolutionsforsch. 24:223–230.CrossRefGoogle Scholar
  170. Wilkens, H., and Meyer, M., 1988, Eye formation and regression during early ontogeny in cave fish, in: New Trends in Ichthyology (J. H. Schröder, ed.), Verlag Paul Parey, Hamburg.Google Scholar
  171. Wilkens, H., Peters, N., and Schemmel, C., 1979, Gesetzmässigkeiten der regressiven Evolution, Verh. Dtsch. Zool. Ges. 1979:123–140.Google Scholar
  172. Yew, D. T., and Yoshihara, A. M., 1977, An ultrastructural study on the retina of the blind cave fish (Astyanax hubbsi), Cytologia 42:175–180.PubMedGoogle Scholar
  173. Zander, C. D., 1965, Die Geschlechtsbestimmung bei Xiphophorus montezumae cortezi Rosen (Pisces), Z. Vererbungsl. 96:128–141.CrossRefGoogle Scholar
  174. Zander, C. D., 1986, Die Jalapa-Population des Schwertträgers Xiphophorus helleri Heckel (Pisces, Poeciliidae) als Modell für die Evolution des Heterochromosoms, Z. Zool. Syst. Evolutionsforsch. 24:129–138.CrossRefGoogle Scholar
  175. Zilles, K. B., Tillmann, B., and Bennemann, R., 1983, The development of the eye in Astyanax mexicanus (Characidae, Pisces), its blind derivative, Anoptichthys jordani (Characidae, Pisces), and their crossbreeds, Cell Tissue Res. 229:423–432.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Horst Wilkens
    • 1
  1. 1.Zoological Institute and Zoological Museum of the University of HamburgHamburg 13West Germany

Personalised recommendations