Skip to main content

Breakdown Mechanisms of Thermally Grown

Silicon Dioxide at High Electric Fields

  • Chapter
The Physics and Technology of Amorphous SiO2

Abstract

Mechanisms of high field electrical breakdown have been widely investigated in recent years in thermally grown silicon dioxide films at fields larger than 7 MV/cm. We find for oxide films thicker than 10 nm that constant voltage and constant current tests produce breakdown by different mechanisms. Specifically, the fast breakdowns of constant voltage tests can be explained by the IIR (Impact ionization-recombination) breakdown model by the growth of positive charge at the cathode at fields larger than a critical field, Fr. The slow breakdowns in constant current tests cannot be explained by the IIR mode, since growth of electron trapping during a test keeps the critical field increasing. It appears that breakdown in constant current tests may be explained as due to the effects of the generation of a very large density of trap states at the injection barrier. The density of trap states generated may grow to 1019/cm3. Such change in the oxide may produce current instability by diverse processes: barrier lowering, resonant tunneling, or transition of the oxide from an insulating to a conducting state. The mechanism of these breakdown processes has not yet been identified. Breakdown by effects of defect generation present novel models of insulator breakdown, and it is of interest to explore their range of validity for SiO2 and also for other insulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Solomon, J. Vac. Sci. Technol. 14:1122 (1977).

    Article  CAS  Google Scholar 

  2. T.H. DiStefano and M. Shatzkes, Appl. Phys. Lett. 25:685 (1974); J. Vac. Sci. Technol. 12:37 (1975); 13:50 (1976).

    Article  CAS  Google Scholar 

  3. N. Klein and P. Solomon, J. Appl. Phys. 47:4364 (1976).

    Article  CAS  Google Scholar 

  4. M. Knoll, D. Braunig and W.R. Fahrner, IEE Trans. Nuc. Sci. NS-29:1471 (1983); in: Insulating Films on Semiconductors. Eds. J.F. Verweij and D.R. Wolters, Elsevier Sci. Publishers, North Holland, (1983), p. 107.

    Google Scholar 

  5. I.C. Chen, S. Holland and Chenming Hu, IEEE Trans. El. Dev. EDL-32:413 (1985); IEEE El. Dev. Lett. EDL-7:164 (1986).

    Article  Google Scholar 

  6. E. Harari, J. Appl. Phys. 49:2479 (1978).

    Article  Google Scholar 

  7. D.R. Wolters, J.J. van der Schoot and T. Poorter, in: Int. Conf. on Insulating Films and Semiconductors. Eds. F.J. Verweij and D.R. Wolters Elsevier Sci. Publishers, North Holland, (1983), p. 256.

    Google Scholar 

  8. A. Modelli and B. Ricco, IEEE Int. Electron Devices Meet. Washington, Techn. Digest (1984) 148.

    Google Scholar 

  9. Ching S. Jenq, T.R. Ranganath, Cheng H. Huang, H. Stanley Jones and Thomas, T.L. Chang, IEEE Int. Electron Devices Meet. Washington, Techn. Digest (1981) 381.

    Google Scholar 

  10. M.M. Heynes, R.F. de Keersmaecker and M.W. Hillen, Appl. Phys. Lett. 44:202 (1984).

    Article  Google Scholar 

  11. A. Badihi, B. Eitan, I. Cohen and J. Shappir, Appl. Phys. Lett. 40:396 (1982).

    Article  CAS  Google Scholar 

  12. Y. Nissan-Cohen, J. Shappir and D. Frohman-Bentchkowsky, J. Appl. Phys. 54:5793 (1983); 57:2830 (1985); 58:2252 (1985).

    Article  CAS  Google Scholar 

  13. B. Balland, C. Plossu and S. Bardy, Thin Solid Films, 148:149 (1987).

    Article  CAS  Google Scholar 

  14. S.K. Lai, Appl. Phys. Lett. 39:58 (1981).

    Article  CAS  Google Scholar 

  15. K.R. Hofman, C. Werner, W. Weber and G. Dorda, IEEE Trans. El. Dev. ED-32:691 (1985).

    Article  Google Scholar 

  16. N. Klein, J. Appl. Phys. 53:5828 (1982).

    Article  CAS  Google Scholar 

  17. B. Ricco, M. Ya. Azbel and M.H. Brodsky, Phys. Rev. Lett. 51:1795 (1983).

    Article  CAS  Google Scholar 

  18. R.H. Koch and A. Hartstein, Phys. Rev. Lett. 54:1848 (1985).

    Article  CAS  Google Scholar 

  19. J. Halbritter, J. Appl. Phys. 58:1320 (1985).

    Article  CAS  Google Scholar 

  20. Z.A. Weinberg and T.N. Nguyen, J. Appl. Phys. 69:1947 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Klein, N. (1988). Breakdown Mechanisms of Thermally Grown. In: Devine, R.A.B. (eds) The Physics and Technology of Amorphous SiO2 . Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1031-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1031-0_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8301-0

  • Online ISBN: 978-1-4613-1031-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics