Spontaneous Breaking of Spatial Homogeneity in a Bistable Reactive System Far from Equilibrium

  • D. Borgis
  • M. Moreau


The time evolution of an inhomogenous bistable reactive system in absence of convection is studied in the birth and death formalism. With the aid of multivariate Master Equations it is shown in simple cases that spatial homegenity can be spontaneously breaken during the passage from metastable to stable state; a theory of nucleation is presented, which allows the evaluation of the nucleation rate.


Saddle Point Metastable State Nucleation Rate Spontaneous Breaking Spontaneous Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Among the many papers on the subject, we only quote two recent articles : C. Vidal and P. Hanusse, Int. Rev. Phys. Chem., 5 (1986), 1; C. Vidal : communication at the present Conference.CrossRefGoogle Scholar
  2. (2).
    A.M. Zhabotinskii and A.N. Zaikin, J. Theor. Biol., 40 (1973, 45.CrossRefGoogle Scholar
  3. (3).
    A. Hanna, A. Saiil and K. Showalter, J. Am. Chem. Soc., 104 (1982), 3838.CrossRefGoogle Scholar
  4. (4).
    R.P. Rastogi, I. Das, M.K. Verma and A.R. Singh, J. Non-Equil. Therm, 8, 1983), 255.CrossRefGoogle Scholar
  5. (5a).
    See for instance G. Nicolis and I. Prigogine, Self - Organization in Non-Equilibrium Systems, Wiley, New York (1977)Google Scholar
  6. (5b).
    H. Haken, Synergetics :An Introduction, Springer) Verlag, Berlin (1978).Google Scholar
  7. (6).
    D. Walgraef, G. Dewel and P. Borkmans, J. Chem. Phys., 78 (1983), 3043.CrossRefGoogle Scholar
  8. (7).
    C. Vidal, A. Pagola, J.M. Bodet, P. Hanusse and E. Bastardic, Journal de Physique, 47 (1986) 1999.CrossRefGoogle Scholar
  9. (8).
    A. Saiil and K. Showalter, in : Oscillations and Travelling Waves in Chemical Systems, R.J. Fields and M. Burger ed., Wiley, New York (1985).Google Scholar
  10. (9).
    F. Schlogl, Z. Phys. 253 (1972) 147.CrossRefGoogle Scholar
  11. (10).
    D. Borgis and M. Moreau, Physica 123 A (1984) 109.CrossRefGoogle Scholar
  12. (11).
    W. Ebeling and H. Malchow, Ann. Phys. (Leipzig) 36 (1979) 121.Google Scholar
  13. (12).
    H. Metiu, K. Kitahara and J. Ross, J. Chem. Phys. 64 (1976) 292.CrossRefGoogle Scholar
  14. (13).
    E.W. Montroll, in : Statistical Mechanics, S.A. Rise, K.F. Freed and J.C. Light ed., Univ. Of Chicago Press (1972).Google Scholar
  15. (14).
    K. Pariinski and P. Zielinski, Zeit. Phys., B 44 (1981), 317.CrossRefGoogle Scholar
  16. (15).
    M. Buttiker and R. Landauer, Phys. Rev. A 23 (1981) 1397.Google Scholar
  17. (16).
    H. Lemarchand, Physica, 101 A (1981) 518.Google Scholar
  18. (17).
    H. Lemarchand and G. Nicolis, J. Stat. Phys. 37 (1984) 609.CrossRefGoogle Scholar
  19. (18).
    H. Kramers, Physica, 7 (1940) 284.CrossRefGoogle Scholar
  20. (19).
    J.S. Langer, Phys. Rev. Lett., 21 (1968) 973.CrossRefGoogle Scholar
  21. (20).
    H.C. Brinkman, Physica, 22 (1956), 29.CrossRefGoogle Scholar
  22. (21).
    R. Landauer and J.A. Swanson, Phys. Rev., 121 (1961), 1668.CrossRefGoogle Scholar
  23. (22).
    D. Borgis, PhD Thesis, P. and M. Curie University, Paris (1986).Google Scholar
  24. (23).
    D. Borgis and M. Moreau, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • D. Borgis
    • 1
  • M. Moreau
    • 1
  1. 1.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations