Skip to main content

Diabatic Electron-Ion Recombination in a Polar Solvent

  • Chapter
Chemical Reactivity in Liquids

Abstract

Electron transfer, such as occurs between ions in solution or between an ion and an electrode, is one of the most fundamental processes in Chemistry. Recent advances in theoryl,2 and simulation techniques3–12 now make it possible to study different aspects of the behavior of electrons in polar fluids. In the near future, it may even prove possible to study electron transfer processes via simulation techniques. However, for the present we focus on a slightly simpler problem which will serve as a prototypic example of electron transfer: the transfer of an electron from its solvated state to an ion, in solution. We have chosen to study first the recombination reaction between a solvated electron and a lithium ion solvated in liquid ammonia. It is now a relatively routine matter to use classical simulation techniques to examine ionic solvation in polar fluids. Thus, the study of a lithium ion in liquid ammonia presents few problems or challenges other than deciding on the potential models for use in the Monte Carlo or molecular dynamics calculation.® In the case of the electron, the Feynman path integral formulation of quantum statistical mechanics enables us to not only treat the electron quantum mechanically but also to treat the classical ion (Li+) and the solvent molecules (ammonia) on an equal footing.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).

    Article  CAS  Google Scholar 

  2. D. Chandler, Y. Singh and D. M. Richardson, J. Chem. Phys. 81, 1975 (1984)

    Article  CAS  Google Scholar 

  3. A. L. Nichols III, D. Chandler, Y. Singh and D. M. Richardson, ibid., 81, 5109 (1984).

    CAS  Google Scholar 

  4. M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984)

    Article  CAS  Google Scholar 

  5. C. D. Jonah, C. Romero, and A. Rahman, Chem. Phys. Lett. 123, 209 (1986).

    Article  CAS  Google Scholar 

  6. M. Sprik, M. L. Klein and D. Chandler, Phys. Rev. B 31, 4234 (1985); J. Chem. Phys. 83, 3042 (1985).

    Article  CAS  Google Scholar 

  7. M. Sprik, R. W. Impey and M. L. Klein, J. Chem. Phys. 83, 5802 (1985).

    Article  CAS  Google Scholar 

  8. M. Sprik, R. W. Impey and M. L. Klein, Phys. Rev. Lett. 56, 2326 (1986).

    Article  CAS  Google Scholar 

  9. B. J. Berne and D. Thirumulai, Ann. Rev. Phys. Chem. 37, 401 (1986).

    Article  CAS  Google Scholar 

  10. P. J. Rossky, J. Schnitker and R. A. Kuharski, J. Stat. Phys. 43, 949 (1986)

    Article  Google Scholar 

  11. J. Schnitker and P. J. Rossky, J. Chem. Phys. 86, 3462; 86, 3471 (1987).

    Article  CAS  Google Scholar 

  12. A. Wallqvist, D. Thirumulai and B. J. Berne, J. Chem. Phys. 86, 6404 (1987); 85, 1583 (1986).

    Article  CAS  Google Scholar 

  13. R. Car and M. P. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  14. A. Selloni, P. Carnevali, R. Car, and M. Parrinello, Phys. Rev. Lett. (1987).

    Google Scholar 

  15. M. Sprik and M. L. Klein, J. Chem. Phys. (1987).

    Google Scholar 

  16. M. J. Davis and E. J. Heller, J. Chem. Phys. 71, 3383 (1979).

    Article  CAS  Google Scholar 

  17. B. Hellsing and H. Metiu, Chem. Phys. Lett. 127, 45 (1986).

    Article  CAS  Google Scholar 

  18. R. W. Impey and M. L. Klein Chem. Phys. 104, 579 (1984).

    CAS  Google Scholar 

  19. S. F. Smith, J. Chandrasekha, and W. L Jorgensen, J. Phys. Chem. 86, 3308 (1982).

    Article  CAS  Google Scholar 

  20. A. M. Stacy and M. J. Sienko, Inorg. Chem. 21, 2294 (1982).

    Article  CAS  Google Scholar 

  21. R. W. Shaw, Phys. Rev. 174, 769 (1968).

    Article  Google Scholar 

  22. D. E. Logan, Phys. Rev. Lett. 57 (1986).

    Google Scholar 

  23. J. C. Thompson, in Metal-Non-Metal Transitions, eds. P.P. Edwards and C.N.R. Rao (Taylor and Francis, London, 1985)

    Google Scholar 

  24. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974).

    Google Scholar 

  25. F. Y. You and G. R. Freeman, J. Phys. Chem. 85, 629 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Klein, M.L., Sprik, M. (1988). Diabatic Electron-Ion Recombination in a Polar Solvent. In: Moreau, M., Turq, P. (eds) Chemical Reactivity in Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1023-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1023-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8297-6

  • Online ISBN: 978-1-4613-1023-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics