Skip to main content

The Role of Electronic Structure Calculation in Mechanistic Analysis of Electron Transfer Reactions in the Liquid Phase

  • Chapter
Chemical Reactivity in Liquids
  • 278 Accesses

Abstract

Model calculations have been employed in elucidating the mechanism of electron transfer reactions in aqueous solution. The contribution of inner shell OH bonds to activation barriers has been estimated from calculation for metal ion hydrates. Calculated electron transfer matrix elements (Haf) for redox processes of the type, ML6 2+ + ML6 3+ = ML6 3+ + ML6 2+, M = Fe, Co, or Ru, L = H2O or NH3, have been analyzed in terms of various orbital concepts. The matrix elements are based on ab initio wavefunctions for model supermolecule clusters of the type, (MLn •••LnM)5+ with n = 1 or 3. The analysis shows that the many-electron Hif quantities can in fact be expressed to good approximation as effective 1-electron expressions of the type, Hif )2 NchLLr, where λ ’is the metal-ligand covalency parameter, hLLr is a local 1-electron matrix element for ligand orbitals in contact in the transition state, and Nc is the number of such contacts. A least-squares fit of the data implies a value of ~ 5000 cm-1 for hLLr showing that significant coupling can occur in the absence of formal bonding between reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Halpern and L. E. Orgel, The theory of electron transfer between metal ions in bridged systems, Discuss. Faraday Soc. 29:32 (1960).

    Article  Google Scholar 

  2. H. M. McConnell, Intramolecular charge transfer in aromatic free radicals, J. Chem. Phys. 35:508 (1961).

    Article  CAS  Google Scholar 

  3. M. D. Newton, Formalisms for electron kinetics in aqueous solution and the role of jib initio techniques in their implementation, Int. J. Quantum. Chem., Quantum Chem. Symp.l4:363 (1980)

    Google Scholar 

  4. J. Logan and M. D. Newton, Ab initio study of electronic coupling in the aqueous Fe2+-Fe3+ Electron Exchange Processes, J. Chem. Phys. 78:4086 (1983)

    Article  CAS  Google Scholar 

  5. J. Logan, M. D. Newton, and J. O. Noell, Factors governing electronic localization in transition metal clusters and complexes, Int. J. Quantum. Chem., Quantum Chem. Symp. 18:213 (1984)

    Article  CAS  Google Scholar 

  6. M. D. Newton and N. Sutin, Electron transfer reactions in condensed phases, Ann. Rev. Phys. Chem. 35:437 (1984)

    Article  CAS  Google Scholar 

  7. M. D. Newton, Comparison of electron-transfer matrix elements for transition-metal complexes: t2g vs eg transfer and NH3 vs. H2O ligands, J. Phys. Chem. 90:3734 (1986)

    Article  CAS  Google Scholar 

  8. M. D. Newton, Ab initio models for electron tunnelling between transition metal complexes, in: “Tunneling,” J. Jortner, B. Pullman, eds., Reidel, Dordrecht, Holland (1986), pp. 305.

    Chapter  Google Scholar 

  9. J. R. Miller and J. V. Beitz, Long range transfer of positive charge between dopant molecules in a rigid glassy matrix, J. Chem. Phys. 74:6746 (1981)

    Article  CAS  Google Scholar 

  10. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, Distance, stereoelectronic effects, and the Marcus inverted region in intramolecular electron transfer in organic radical anions, J. Phys. Chem. 90:3673 (1986).

    Article  CAS  Google Scholar 

  11. S. Larsson, Electron transfer in chemical and biological systems. Orbital rules for nonadiabatic transfer, J. Am. Chem. Soc. 103:4034 (1981)

    Article  CAS  Google Scholar 

  12. S. Larsson, π Systems as bridges for electron transfer between transition metal ions, Chem. Phys. Lett. 90:136 (1982)

    Article  CAS  Google Scholar 

  13. S. Larsson, Electron transfer in proteins, J. Chem. Soc., Faraday Trans. 2 79:1375 (1983)

    Google Scholar 

  14. S. Larsson, Electron-exchange reaction in aqueous solution, J. Phys. Chem. 88:1321 (1984)

    Article  CAS  Google Scholar 

  15. S. Larsson, K. Stahl, and M. C. Zerner, Hexaamminecobalt electron-self-exchange reaction, Inorg. Chem. 25:3033 (1986).

    Article  CAS  Google Scholar 

  16. J. J. Hopfield, Electron transfer between biological molecules by thermally activated tunneling, Proc. Natl. Acad. Sci. U.S.A. 71:3640 (1974)

    Article  CAS  Google Scholar 

  17. D. N. Beratan, J. N. Onuchic, and J. J. Hopfield, Limiting forms of the tunneling matrix element in the long distance bridge mediated electron transfer problem, J. Chem. Phys. 83:5325 (1985)

    Article  CAS  Google Scholar 

  18. D. N. Beratan, J. N. Onuchic, and J. J. Hopfield, Electron tunneling through covalent and noncovalent pathways in proteins, J. Chem. Phys. 86:4488 (1987).

    Article  CAS  Google Scholar 

  19. M. J. Ondrechen, M. A. Ratner, and D. E. Ellis, The electronic structure of the Creutz-Taube ion: A Hartree-Fock-Slater study, Chem. Phys. Lett. 109:50 (1984);

    Article  CAS  Google Scholar 

  20. K. V. Mikkelsen and M. A. Ratner, Electron tunneling in solid-state electron-transfer reactions, Chem. Rev. 87:113 (1987).

    Article  CAS  Google Scholar 

  21. K. Ohta, G. C. Closs, K. Morokuma, and N. J. Green, Stereoelectronic effects in intramolecular long-distance electron transfer in radical anions as predicted by ab initio MO calculations, J. Am. Chem. Soc. 108:1319 (1986);

    Article  CAS  Google Scholar 

  22. K. Ohta and K. Morokuma, An ab initio Mo study on electron transfer in gas-phase hydrated clusters: O2-(H2O)n + O2→O2 + O2-(H2O)n(n = 0, 1, and 2), J. Phys. Chem. 91:401 (1987).

    Article  CAS  Google Scholar 

  23. A. Kuki and P. Wolynes, Electron tunneling paths in proteins, Science 236:1647 (1987).

    Article  CAS  Google Scholar 

  24. M. D. Newton, Electronic structure analysis of electron transfer matrix elements for transition metal redox pairs, J. Phys. Chem., submitted.

    Google Scholar 

  25. A. M. Kuznetsov, Faraday Discuss. Chem. Soc. 74:49 (1982); Chem. Phys. Lett. 91:34 (1982).

    Article  Google Scholar 

  26. B. L. Tembe, H. L. Friedman, and M. D. Newton, The theory of the Fe +-Fe + electron exchange in water, J. Chem. Phys. 76:1490 (1982).

    Article  CAS  Google Scholar 

  27. H. L. Friedman and M. D. Newton, The theory of the Fe2+-Fe3+ electron exchange in water, Faraday Discuss. Chem. Soc. 74:73 (1982).

    Article  Google Scholar 

  28. M. D. Newton, Theoretical aspects of the 0H***0 hydrogen bond and its role in structural and kinetic phenomena, Acta Cryst. B39:104 (1983).

    Article  Google Scholar 

  29. M. D. Newton, Current views of hydrogen bonding from theory and experiment — structure, energetics, and control of chemical behavior, Trans. Am. Chem. Assoc. 22:1 (1986).

    CAS  Google Scholar 

  30. M. D. Newton and H. L. Friedman, A proposed neutron diffraction experiment to measure hydrogen isotope fractionation in solution, J. Chem. Phys. 83:5210 (1985).

    Article  CAS  Google Scholar 

  31. H. L. Friedman and M. D. Newton, H/D isotope effect on outer sphere electron exchange, J. Electroanal. Chem. 204:21 (1986).

    Article  CAS  Google Scholar 

  32. B. S. Brunschwig, C. Creutz, D. H. Macartney, T.-K. Sham, and N. Sutin, The role of inner-sphere configuration changes in electron-exchange reactions of metal complexes, Faraday Discuss. Chem. Soc. 74:113 (1982).

    Article  Google Scholar 

  33. J. R. C. van der Maarel, H. R. W. M. de Boer, J. de Bleijser, D. Bedeaux, and J. C. Leyte, On the structure and dynamics of water in AICI3 solutions from H, D, 0, and Al nuclear magnetic relaxation, J. Chem. Phys. 86:3373 (1987).

    Article  Google Scholar 

  34. P. Bopp, private communication cited as ref. 8 in the paper by van der Maarel et al. 20

    Google Scholar 

  35. C. F. Melius, B. D. Olafson, and W. A. Goddard III, Fe and Ni ab initio effective potentials for use in molecular calculations, Chem. Phys. Lett. 28:457 (1974)

    Article  CAS  Google Scholar 

  36. Topiol, S.; J. W. Moskowitz, and C. F. Melius, Atomic coreless Hartree-Fock pseudopotentials for atoms K through Zn, J. Chem. Phys. 68:2364 (1978).

    Article  CAS  Google Scholar 

  37. H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr, Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics, J. Chem. Phys. 47:1936 (1967).

    Article  CAS  Google Scholar 

  38. W. H. E. Schwarz and T. C. Chang, Multiconfiguration wave functions for highly excited states by the generalized Brillouin theorem method, Int. J. Quant. Chem. Symp. 10:91 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Newton, M.D. (1988). The Role of Electronic Structure Calculation in Mechanistic Analysis of Electron Transfer Reactions in the Liquid Phase. In: Moreau, M., Turq, P. (eds) Chemical Reactivity in Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1023-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1023-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8297-6

  • Online ISBN: 978-1-4613-1023-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics