Ground-State Molecular Interactions of Bacteriochlorophyll C in Chlorosomes of Green Bacteria and in Model Systems: A Resonance Raman Study

  • M. Lutz
  • G. van Brakel


Chlorosomes of green photosynthetic bacteria from the two fami lies Chlorobiaceae and Chloroflexaceae contain large amounts of BChls c, d or e, which constitute peripheral antenna systems connected to the intrinsic membrane antenna (Olson, 1980). Chlorosomes of the two best studied species, Chlorobium limicola and Chloroflexus aurantiacus contain BChl c (Fig. 1). In both species these molecules appear highly organized. Their lowest singlet electronic transitions Qy assume mutuaL coupling and the resulting transition moments exhibit non-random orientations, being predominantly parallel to the membrane COLson, 1980; Betti et al., 1982; van Dorsen et al., 1986a, b; Gerola and Olson, 1986). BChl c is thought to be associated with small polypeptides (Schmitz, 1967; Wechsler et al., 1985; Gerola et al., 1988). These associations however must be somewhat weaker than in intrinsic membrane antenna complexes, considering the ease with which BChl c can be washed from chlorosomes (Feick and Fuller, 1984), and the fact that it has not yet been possible to extract any intact BChl c-protein from chlorosomes.


Green Sulfur Bacterium Resonance Raman Spectrum Magnesium Atom Resonance Raman Spectroscopy Hydroxyethyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betti, J.R., Blankenship, R.E., Natarajan, L.V., Dickinson, L.C., and Fuller, R.C., 1982, Rntenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus, Biochim, Biophvs. Acta, 680:194.Google Scholar
  2. Blankenship, R. E., Brune, O. C., Freeman, J. M. King, G. H., McManus, G. H., Nozawa, T., Trost, J. T., and Wittmershaus, B. P., 1986, Energy trapping and electron transfer in ChIorof Iexus aurantiacus, This volume.Google Scholar
  3. Bystrova, M.I., Malgosheva, I.N., and Krasnovskii, R.R., 1979, Study of molecular mechanism of self-assembly of aggregated forms of bacteriochlorophyll c, Mol Biol. USSR, 13:582 (Engl, trans.: 440).Google Scholar
  4. Cotton, T.M., and Van Duyne, R.P., 1981, Characterization of bacteriochlorophyll interactions in vitro by resonance Raman spectroscopy, J. Am. Chero. Soc., 103:6020.CrossRefGoogle Scholar
  5. Feick, R.G., and Fuller, R.C., 1984, Topography of the photosynthetic apparatus of Chloroflexus aurantiacus, Biochem.. 23:3693.CrossRefGoogle Scholar
  6. Fujiwara, M., and Tasumi, M., 1986, Resonance Raman and infrared studies on axial coordination to chlorophylls a and b in vitro, J. Phvs. Chem., 90:250.Google Scholar
  7. Gerola, P. D., and Olson, J.M., 1986, A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria, Biochim. Biophvs. Acta, 848:69.CrossRefGoogle Scholar
  8. Gerola, P. D., Højrup, P., Knudsen, 3., Roepstorff, P., and Olson, J. M., 1966, The bacteriochlorophylI c-binding protein from chlorosomes of Chlorobium limicola f. thiosulfatophilum, This volume.Google Scholar
  9. Katz, J. J., Shipman, L. L., Cotton, T. M., and Janson, T. R., 1978, Chlorophyll aggregation: coordination interactions in chlorophyll monomers, dimers, and oligomers, in: “The Porphyrins, Vol. 5,” D. Dolphin, ed., Academic Press, New York.Google Scholar
  10. Lutz, M., 1974, Resonance Raman spectra of chlorophyll in solution, J. Raman Spectrosc., 2:497.CrossRefGoogle Scholar
  11. Lutz, M., 1977, Rntenna chlorophyll in photosynthetic membranes: a study by resonance Raman spectroscopy, Biochim. Biophvs. Acta, 460:408.CrossRefGoogle Scholar
  12. Lutz, M., 1979, Diffusion Raman de resonance des chtorophylles: application a l ‘étude de l’organisation de La membrane photosynthetique, Thèse de Doctorat d’Etat, Universitè Pierre et Marie Curie, Paris, France.Google Scholar
  13. Lutz, M., 1984, Resonance Raman studies in photosynthesis, Adv. Infrared and Raman Spectrosc., 11:211.Google Scholar
  14. Lutz, M., and Robert, B., 1985, Local environments of bacteriochlorophylIs in antenna structures of RhodospirilLales and of Chlorobiales, Abstracts, Fifth Int. Symp. on Photosynthetic Prokaryotes, Grindetwald, Switzerland, 27-28 Sept. 1965.Google Scholar
  15. Lutz, M., and Robert, B., 1967, Chlorophylls and the photosynthetic membrane, in: “Biological Applications of Raman Spectroscopy, Vol. 3,” T.G. Spiro, ed., Wiley-Heyden, New York (in press).Google Scholar
  16. Lutz, M., Hoff, A.J., and Bréhamet, L., 1962, Bacteriochlorophyll a-protein interactions in a complex from Prosthecochloris aestuarii: a resonance Raman study, Biochim. Biophys, Beta, 679:631.Google Scholar
  17. Olson, J.M., 1960, Chlorophyll organization in green photosynthetic bacteria, Biochim. Biophys. Acta, 594:33.Google Scholar
  18. Olson, J. M., and Pedersen, J. P., 1960, BacteriochlorophytI c aggregates in carbon tetrachloride as models for chlorophyll organization in green photosynthetic bacteria, in: “Organization and Function of Photosynthetic Antennas,” H. Scheer and S. Scheider, eds., Walter de Gruyter, Berlin (in press).Google Scholar
  19. Robert, B., and Lutz, M., 1985, Structures of antenna complexes of several Rhodospirillales from their resonance Raman spectra, Biochim. Biophys. Acta, 807:10.CrossRefGoogle Scholar
  20. Robert, B., and Lutz, M., 1966, Structure of the primary donor of Rhodopseudomnas sphaeroides: difference resonance Raman spectroscopy of reaction centers, Biochemistry, 25:2303.CrossRefGoogle Scholar
  21. Schmitz, R., 1967, liber die Zusammensetzung der pigmenthaltigen Strukturen aus Prokaryoten. II. Undersuchungen an Chromatophoren von Chlorobium thiosulfatophilum, Stamm Tassajara, Arch. Microbiol., 56:238.Google Scholar
  22. Smith, K.M., Kehres, L.A., and Fajer, J., 1983, Aggregation of the bacteriochlorophylIs c, d, and e. Mudels for the antenna chlorophylls of green and brown photosynthetic bacteria, J. Am. Chem, Soc., 105:1387.Google Scholar
  23. Tasumi, M., and Fujiwara, M., 1987, Vibrational spectra of chlorophylls, Adv. Infrared and Raman Spectrosc., 14 (in press).Google Scholar
  24. van Dorssen, R.J., Vasmel, H., and Amesz, J., 1986a, Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. II. The chlorosomes, Photosynth. Res., 9:33.Google Scholar
  25. van Dorssen, R.J., Gerola, P. O., Olson, J.M., and Amesz, J., 1986b, Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola, Biochim. Biophys. Acta, 848:77.CrossRefGoogle Scholar
  26. Wechsler, T., Suter, F., Fuller, R.C., and Zuber, H., 1985, The complete amino acid sequence of the bacteriochlorophyl1 c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus, FEBS Lett., 181:173CrossRefGoogle Scholar
  27. Worcester, D.L., Michalski, T.J., and Katz, J.J., 1986, Small-angle neutron scattering studies of chlorophyll micelles: models for bacterial antenna chlorophyll, Proc. Natl. Acad. Sci. U.S.A., 83:3791.PubMedCrossRefGoogle Scholar
  28. Zuber, H., 1988, Structural studies on the antenna complexes and polypeptides of Chloroflexus aurantiacus and other green photosynthetic bacteria. This volume.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Lutz
    • 1
  • G. van Brakel
    • 2
  1. 1.Département de BiologieCEN SaclayGif-sur-YvetteFrance
  2. 2.Biokemisk InstitutOdense UniversitetOdenseDenmark

Personalised recommendations