Diel Migration as a Mechanism for Enrichment of Natural Populations of Branching Species of Pelodictyon

  • C. A. Abella
  • J. Garcia-Gil


Phototrophic bacteria show a wide variety of strategies for survival in planktonic habitats.


Light Quality Sulfide Concentration Phototrophic Bacterium Meromictic Lake Diel Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradford, M.M., 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 27:246.Google Scholar
  2. Brugada, D., 1966, Sulfur metabolism and detoxifying role of phototrophic bacteria of Vilar lake CBanyoles), Master Science Thesis, Autonomous University of Barcelona, Girona, Spain.Google Scholar
  3. Bührer, H., and Ambühl, H., 1975, Einleitung von Abwasser in Seen. Schweiz. Z. Hydrol., 37:347.CrossRefGoogle Scholar
  4. Clark, A.E., and Walsby, A.E., 1976a, The occurrence of gas-vacuolate bacteria in lakes, Arch. Microbiol., 116:223.Google Scholar
  5. Clark, A.E., and Walsby, A.E., 1978b, The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake, Arch. Microbiol. 16:229.CrossRefGoogle Scholar
  6. Gibson, J., Pfennig, N., and Waterbury, J. B., 1984, Chloroherpeton thalassium gen. nov. et spec, nov., a non-filamentous, flexing and gliding green sulfur bacterium, Arch. Microbiol., 138:96.PubMedCrossRefGoogle Scholar
  7. Gorlenko, V.M., 1972, A new species of phototrophic brown sulfur bacteria, (in Russian), Mikrobiologiya, 41:370.Google Scholar
  8. Herbert, D., Phipps, P.J., and Strange, R.E., 1975, Chemical analysis of microbial cells, Methods in Microbiology, Vol. 5, Academic Press, New York.Google Scholar
  9. Hobbie, J.E., Daley, J.R., and Jasper, S., 1977, Use of Nuctepore filters for counting bacteria by ftourescence microscopy, Appl. Environ. Microbiol., 33:1225.PubMedGoogle Scholar
  10. Jørgensen, B.B., Kuenen, J.G., and Cohen, Y., 1979, Microbial transformations of sulfur compounds in a stratified take (Solar Lake, Sinai), Limnol. Oceanogr., 24:799.CrossRefGoogle Scholar
  11. Kholer, H.P., Ahring, B., Abella, C.A., Ingvorsen, K., Kewetoh, H., Laczko, E., Stupperich, E., and Tornei, F., 1364, Bacteriological studies on the sulfur cycle in the anaerobic part of the hypotimnion and in the surface sediments of Rotsee in Switzerland, FEMS Microbiol. Lett., 21:279.Google Scholar
  12. Konopka, A.E., 1977, Inhibition of gas vesicle production in hicrocyclus aguaticus by 1-lysine, Can. J. Microbiol., 23:363.PubMedCrossRefGoogle Scholar
  13. Konopka, A., and Schnur, M., 1980, Effect of light intensity on macromolecular synthesis in cyanobacteria, Microbial Ecol., 6:291.CrossRefGoogle Scholar
  14. Montesinos, E., Guerrero, R., Abella, C.A., and Esteve, I., 1983, Ecology and physiology of competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats, Appl. Environ, Microbiol., 46:1007.Google Scholar
  15. Okada, M., and Aiba, S., 1963, Simulation of water-bloom in a eutrophic lake. II. Reassessment of buoyancy, gas vacuole and turgor pressure of Microcystis aeruginosa, Water Res., 17:677.Google Scholar
  16. Parkin, T.B., and Brock, T.D., 1960, The effects of light quality on the growth of photosynthetic bacteria in lakes, Arch. Microbiol., 125:19.CrossRefGoogle Scholar
  17. Parkin, T.B., and Brock, T.D., 1981, The role of phototrophic bacteria in the sulfur cycle of a meromictic lake, Limnol. Oceanogr,, 26:860.CrossRefGoogle Scholar
  18. Pfennig, N., 1965, Anreicherungskulturen für Röte und Grune Schwefelbakteria. Zentralbl. Bacterial. Farasiten. Infektionskr. Hyg, Abt. 1, Suppl. 1:179.Google Scholar
  19. Pfennig, N., 1980, Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria, in: “Anaerobes and Anaerobic Infections,” G. Gottschalk, N. Pfennig and H. Werner, eds., Gustav Fischer Verlag, Stuttgart.Google Scholar
  20. Pfennig, N., and Cohen-Bazire, G., 1967, Some properties of the green bacterium Pelodictyon clathratiforme, Arch. Microbiol., 59:226.CrossRefGoogle Scholar
  21. Stal, L.J., van Gemerden, H., and Krumbein, W.E., 1984, The simultaneous assay of chlorophyll and bacteriochlorophyl1 in natural microbial communities, J. Microbiol. Meth., 2:295.CrossRefGoogle Scholar
  22. Takahashi, M., and lchimura, S., 1970, Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes, Limnol. Oceanogr., 15:929.CrossRefGoogle Scholar
  23. Trüper, H.G., 1967, Phototrophic bacteria (an incoherent group of prokaryotes). A taxonomy versus phylogenetic survey, Microbioloqia SEM, 3:71.Google Scholar
  24. van Gemerden, H., 1983, Physiological ecology of purple and green bacteria, Annal. Microbiol. (Inst. Pasteur), 134:73.CrossRefGoogle Scholar
  25. van Rijn, J., and Shilo, M., 1985, Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fishponds, Limnol. Oceangar., 30:1219.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • C. A. Abella
    • 1
  • J. Garcia-Gil
    • 1
  1. 1.Institute of Aquatic EcologyUniversity College of Girona (Autonomous University of Barcelona)GironaSpain

Personalised recommendations