Advertisement

The Green Sulfur and Nonsulfur Bacteria of Hot Springs

  • R. W. Castenhotz

Abstract

Hot springs are inhibited primarily by prokaryotes and provide habitats where nearly monospecific populations of phototrophs occur in a recognizable pattern. There is a great diversity of hot springs with regard to chemistry, but within the array, some species of almost all groups of photosynthetic bacteria may be found.

Keywords

High Light Intensity Sulfide Concentration Green Bacterium Free Sulfide Dull Green 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brock, T. D., 1976, “Thermophilic Microorganisms and Life at High Temperatures”, Springer-Verlag, New York.Google Scholar
  2. Castenhotz, R.W., 1973, The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs, Limnol, Oceanogr. 16:663.Google Scholar
  3. Castenhotz, R.W., 1976, The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland, J Phycol., 12:54.Google Scholar
  4. Castenhotz, R.W., 1977, The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park, Microbial Ecol., 3:79.CrossRefGoogle Scholar
  5. Castenhotz, R.W., 1976, The biogeography of hot spring algae through enrichment cultures, Mitt. Internat. Verein. Limnol., 21:236.Google Scholar
  6. Castenhotz, R. W., 1964a, Habitats of Chloroflexus and related organisms, in: “Current Perspectives in Microbial Ecology,” M.J. Klug and C. Reddy, eds., American Society for Microbiology, Washington, D. C.Google Scholar
  7. Castenholz, R. W., 1964b, Composition of hot spring microbial mats: a summary, in: “Microbial Mats: StromatolItes,” Y. Cohen, R.W. Castenholz, and H. Halvorson, eds., Alan R. Liss, New York.Google Scholar
  8. Cline, J.D., 1969, Spectrophotometry determination of hydrogensulfide in natural waters, Limnol. Oceanogr., 14:454CrossRefGoogle Scholar
  9. Giovannoni, S. J., Revsbech, N. P., Ward, D. M., and Castenholz, R. W., 1967a, Obligatety phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats, Arch. Microbiol., 147:60.Google Scholar
  10. Giovannoni, S.J., Schabtach, E., and Castenholz, R.W., (1987b). Isosphaera pallida, gen. and comb, nov., a gliding, budding eubacterium from hot springs, Arch. Microbiol., 147:276.CrossRefGoogle Scholar
  11. Jørgensen, B. B., and Nelson, D. C., 1967, Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland, Microbial Ecol, in press.Google Scholar
  12. Madigan, M.T., and Brock, T.D., 1975, Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium, J. Bacteriol., 122:782.PubMedGoogle Scholar
  13. Pierson, B.K., and Castenholz, R.W. 1974a, A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov., Arch. Microbiol., 100:5.Google Scholar
  14. Pierson, B. K., and Castenholz, R. W., 1974b, Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium, Arch. Microbiol., 100:283.CrossRefGoogle Scholar
  15. Pierson, B.K., Giovannoni, S.J., and Castenholz, R.W., 1984, Phynologica ecology of a gliding bacterium containing bacteriochlorophyll a, Appl. Environ. Microbiol., 47:576.PubMedGoogle Scholar
  16. Pierson, B.K., Giovannoni, S.J., Staht, D. A., and Castenholz, R.W., 1985, Heliothrix orgegonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophylI a, Arch, Microbiol., 142:164.CrossRefGoogle Scholar
  17. Redlinger, T.E., and Fuller, R.C., 1985, Protein processing as a regulatory mechanism in the synthesis of the photosynthetic antenna in Chloroflexus, Arch. Microbiol., 141:344.CrossRefGoogle Scholar
  18. Revsbech, N.P., and Jergensen, B.B., 1986, Microetectrodes: their use in microbial ecology, Adv. Microbial Ecol., 9:293.Google Scholar
  19. Revsbech, N.P., and Ward, D.M., 1964, Microetectrode studies of interstitial water chemistry and photosynthetic activity In a hot spring microbial mat, Appl. Environ. Microbiol. 46:270.Google Scholar
  20. Sprague, S. G., Staehelin, L.A,, and Fuller, R.C., 1961, Semiaerobic induction of bacteriochlorophylI synthesis in the green bacterium Chloroflexus aurantiacus, J. Bacteriol., 147:1032.Google Scholar
  21. Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. R., and Winfrey, M. R., 1984, Decomposition of hot spring microbial mats, in. “Microbial Mats: Stromatolites,” Y. Cohen, R.W. Castenholz, and H. Halvorson, eds., Alan R. Liss, New YorkGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. W. Castenhotz
    • 1
  1. 1.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations