Skip to main content

Nitrogen Metabolism and N2 Fixation in Phototrophic Green Bacteria

  • Chapter
Green Photosynthetic Bacteria

Abstract

The ability of phototrophic purple bacteria to fix N2 was discovered during studies of tight-dependent H2 production by Rhodospirillum rubrum (Gest and Kamen, 1949; Kamen and Gest 1949). Subsequent studies of N2 fixation in nonsulfur purple bacteria have shown this important metabolic process to be nearly universally distributed across the group (Madigan et al., 1984). Shortly after the discovery of N2 fixation in R. rubrum, strains of Chromatium and Chlorobium were also shown to be capable of fixing molecular nitrogen (Lindstrom et at., 1950). Until the 1980’s all subsequent work on aspects of nitrogen fixation in green bacteria employed the syntrophic mixed culture “Chloropseudomonas” (Zakhvateva et al., 1970; Zakhvateva and Kondrateva, 1971; Evans and Smith, 1971; Evans et al., 1971; Smith et al., 1971). These studies, of course, cannot be considered definitive because of the likelihood that the heterotrophic component of the “Chloropseudomonas” culture was itself a N2-flxer (many sulfate-reducing bacteria are known to fix N2 (Postgate and Kent, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alef, K., and Kleiner, D., 1962, Regulatory aspects of inorganic nitrogen metabolism in RhodospiriIlaceae, Arch. Microbiol., 133:239.

    Article  Google Scholar 

  • Arp, D.J., and Zumft, W, G., 1963, Overproduction of nitrogenase by nitrogen-limited cultures of Rhodopseudomonas palustris, J. Bacteria., 153:1322.

    Google Scholar 

  • Beer-Romero, P., 1966, Comparative studies on Heliobacterium chlorum, Heliospiritturn qestii and Heliobacillus mobilis, M.A. thesis, Indiana University, Department of Biology, Bloomington, Indiana.

    Google Scholar 

  • Beer-Romero, P., and Gest, H., 1967, Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacterlichlorophylt g, FEMS Microbiol. Lett., 41:109.

    Article  Google Scholar 

  • Evans, M.C.W., and Smith, R.V., 1971, Nitrogen fixation by the green photosynthetic bacterium Chloropseudomonas ethyticum, J. Gen. Microbiol., 65:95.

    CAS  Google Scholar 

  • Evans, M.C. W., Telfer, A., Cammack, R., and Smith, R.V., 1971, EPR studies of nitrogenase: ATP dependent oxidation of fraction 1 protein by cyanide, FEBS Lett., 15:317.

    Article  PubMed  CAS  Google Scholar 

  • Gest, H., and Favinger, J.L., 1963, Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophy11, Arch. Microbiol., 136:11.

    Article  Google Scholar 

  • Gest, H., and Kamen, M.O., 1949, Photoproduction of molecular hydrogen by Rhodospirilum rubrum. Science, 109:558

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J., Ludwig, W., Stackebrandt, E., and Woese, C.R.,.1965, The phytogeny of the green photosynthetic bacteria: absence of a close relationship between Chlorobium and Chloroflexus, Syst. Appl, Microbiol., 6:152.

    Google Scholar 

  • Gotto, J.W., and Yoch, D.C., 1985, Regulation of nitrogenase activity by covalent modification in Chromatium vinosum, Syst. Appl, Microbiol., 141:40.

    CAS  Google Scholar 

  • Hallenbeck, P.C., 1987, Molecular aspects of nitrogen fixation by photosynthetic prokaryotes, CRC Crit. Revs. Microbiol., 14:1.

    Article  CAS  Google Scholar 

  • Heda, G. D., and Madigan, M.T., 1986a, Aspects of nitrogen fixation in Chlorobium, Arch. Microbiol., 143:330.

    Article  CAS  Google Scholar 

  • Heda, G. D., and Madigan, M.T., 1986b, Utilization of amino acids and tack of diazotrophy in the thermophilic anoxygenic phototroph Chloroftexus aurantiacus, J. Gen. Microbiol., 132:2469.

    CAS  Google Scholar 

  • Johansson, Bo. C., Nordtund, S., and Battscheffsky, H., 1963, Nitrogen fixation and ammonia assimilation, in: “The Phototrophic Bacteria: Anaerobic Life in the Light,” J. G. Ormerod, ed., University of California Press.

    Google Scholar 

  • Kamen, M.D., and Gest, H., 1949, Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirilium rubrum, Science 109:560.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D.P., 1974, Growth and metabolism of the obligate phototithotroph Chlorobium thiosulfatophilum in the presence of added organic nutrients, Arch. Microbiol., 100:163.

    Article  CAS  Google Scholar 

  • Keppen, O.I., Lebedeva, N.V., Petukhov, S.A., and Rodionov, Yu. V., 1985, The activity of nitrogenase in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum, Microbology (English translation of Mikrobioloqiya) 54:28.

    Google Scholar 

  • Kovacs, K.L., Bagyinka, Sc., and Serebriakova, L.T., 1983, Distribution and orientation of hydrogenase in various photosynthetic bacteria, Curr. Microbiol., 9:215.

    Article  CAS  Google Scholar 

  • Laemmli, U.K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London), 227:680.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, E.S., Tove, S.R., and Wilson, P.W., 1950, Nitrogen fixation by the green and purple sulfur bacteria, Science, 112:197.

    Article  PubMed  CAS  Google Scholar 

  • Ludden, P.W., and Burris, R.H., 1976, Activating factor for the iron protein of nitrogenase from Rhodospirilium rubrum, Science, 194:424.

    Article  PubMed  CAS  Google Scholar 

  • Ludden, P.W., and Burns, R.H., 1978, Purification and properties of nitrogenase from Rhodospirillum rubrum, and evidence for phosphate, ribose, and an adenine-tike unit covalently bound to the iron protein, Biochem. J., 175:251.

    PubMed  CAS  Google Scholar 

  • Madigan, M.T., 1986, Chromatium tepidum, spn, a thermophilic photosynthetic bacterium of the family Chromatiaceae, Intern. J. Syst. Bacteriol., 36:222.

    Article  CAS  Google Scholar 

  • Madigan, M.T., Cox, S.S., and Stegeman, R.R., 1984, Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae, J. Bacteriol., 157:73.

    PubMed  CAS  Google Scholar 

  • Madigan, M. T., and Gest, H., 1962, Biological dinitrogen fixation by photosynthetic bacteria, in: “CRC Handbook Series of Biosolar Resources, Volume I, part I: Basic Principles,” A. Mitsui and C.C. Black, eds., CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Meyer, J., Ketley, B.C., and Vignais, P.M., 1978, Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria, Biochimie, 60:245.

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J.R., 1962, The Fundamentals of Nitrogen Fixation, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Postgate, J.R., and Kent, H.M., 1985, Diazotrophy within Desulfovibrio, J Gen. Microbiol., 131:2119.

    Google Scholar 

  • Rodinov, Yu. V., Lebedeva, N.V., and Kondrateva, E.N., 1986, Ammonia inhibition of introgenase activity in purple and green bacteria, Arch. Microbiol., 143:345.

    Article  Google Scholar 

  • Saari, L.L., Triptett, E.W., Ludden, P. W,, 1984, Purification and properties of the activating enzyme for iron protein of nitrogenase from the photosynthetic bacterium Rhodospirilium rubrum, J. Biol. Chem., 259:15502.

    PubMed  CAS  Google Scholar 

  • Simpson, F.B., and Burris, R.H.1984, A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase, Science, 224:1095.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.V., Telfer, R., and Evans, M.C.W., 1971, Complementary functioning of nitrogenase components from a blue-green alga and a photosynthetic bacterium, J. Bacterial., 107:574.

    CAS  Google Scholar 

  • Stollar, D., and Levine, L., 1953, Two dimensional immunodiffusion, Meth. Enzvmol., 6:846.

    Google Scholar 

  • Sweet, W.J., and Burris, R.H., 1981, Inhibition of nitrogenase activity by NH4 + in Rhodospirilium rubrum, J. Bacteriol., 145:624.

    Google Scholar 

  • Yoch, D.C., 1979, Manganese, an essential trace element for N2 fixation by Rhodospirilium rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation, J. Bacteriol., 140:987.

    PubMed  CAS  Google Scholar 

  • Yoch, D. C., 1976, Nitrogen fixation and hydrogen metabolism by photosynthetic bacteria, in: “The Photosynthetic Bacteria,” R.K. Clayton and W.R. Sistrom, eds., Plenum Press, New York.

    Google Scholar 

  • Zakhvateva, N.V., and Kondrateva, E.N., 1971, Fixation of molecular nitrogen by photosynthesizing bacteria in relation to presence of ligth and ATP and character of exogenous substrate, Dokl. Akad. Nauk SSSR, 196:72.

    Google Scholar 

  • Zakhvateva, N.V., Malofeeva, I.V., and Kondrateva, E.N., 1970, Nitrogen fixation capacity of photosynthesizing bacteria, Microbiology (English translation of Mikrobioloqiya), 39:661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Heda, G.D., Madigan, M.T. (1988). Nitrogen Metabolism and N2 Fixation in Phototrophic Green Bacteria. In: Olson, J.M., Ormerod, J.G., Amesz, J., Stackebrandt, E., Trüper, H.G. (eds) Green Photosynthetic Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1021-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1021-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8296-9

  • Online ISBN: 978-1-4613-1021-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics