Shil’nikov Chaos in Lasers

  • F. T. Arecchi
Part of the NATO ASI Series book series (NSSB, volume 176)

Abstract

The onset of deterministic chaos in lasers is studied by referring to low dimensional systems, in order to isolate the characteristics of chaos from the random fluctuations due to the coupling with a thermal reservoir. For this purpose, attention is focused on single mode homogeneous line lasers, whose dynamics is ruled by a low number of coupled variables. In the examined cases, experiments and theoretical model are in close agreement. In particular I describe Shilnikov chaos, how it can be characterized, and the strong resulting coupling between nonlinear dynamics and statistical mechanics.

Keywords

Manifold Coherence ZnSe Ruby 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /l/.
    W.E. Lamb Jr., Phys. Rev. 134, A1429 (1964).ADSCrossRefGoogle Scholar
  2. /2/.
    H. Haken, Laser Theory, in Encyclopedia of Physics vol. XXV/2c, ed. S. Flügge, Springer 1970.Google Scholar
  3. /3/.
    M. Scully and W.E. Lamb Jr., Phys. Rev. Letters 16, 853 (1966), Phys. Rev. 159, 208 (1967) and 166,246 (1968).ADSCrossRefGoogle Scholar
  4. /4/.
    J.P. Gordon, Phys. Rev. 161, 367 (1967).ADSCrossRefGoogle Scholar
  5. /5/.
    H. Haken, Synergetics, 3d Ed., Springer 1983.Google Scholar
  6. /6/.
    F.T. Arecchi, in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics (Proc. XVII Solvay Conf. on Physics, ed. G. Nicolis et al.), J. Wiley 1981.Google Scholar
  7. /7/.
    R.J. Glauber, in Quantum Optics and Electronics, (ed. C. De Witt et al.) Gordon and Breach, 1965.Google Scholar
  8. /8/.
    F.T. Arecchi, in Quantum Optics (ed. R.J. Glauber), Academic Press 1969.Google Scholar
  9. /9/.
    F.T. Arecchi and R.G. Harrison (Eds) Instabilities and Chaos in Quantum Optics, Springer Verlag 1987.Google Scholar
  10. /10/.
    E.M. Lorenz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  11. /11/.
    F.T. Arecchi, G.L. Lippi, G.P. Puccioni and J.R. Tredicce, Optics Comm. 51, 308 (1984).ADSCrossRefGoogle Scholar
  12. /12/.
    F.T. Arecchi, R. Meucci, G. P. Puccioni and J.R. Tredicce, Phys. Rev. Lett. 49, 1217 (1982).ADSCrossRefGoogle Scholar
  13. /13/.
    G.L. Lippi, J.R. Tredicce, N.B. Abraham and F.T. Arecchi, Optics Comm. 53, 129 (1985).ADSCrossRefGoogle Scholar
  14. /14/.
    F.T. Arecchi, W. Gadomski and R. Meucci Phys. Rev. A43, 1617 (1986).ADSGoogle Scholar
  15. /15/.
    F.T. Arecchi, A. Lapucci, R. Meucci, J.A. Roversi and P. Coullet (to be published).Google Scholar
  16. /16/.
    L.P. Shilnikov, Dokl. Aka. Nauk SSSR 160, 558 (1965).Google Scholar
  17. L.P. Shilnikov, Mat. Sbornik 77, (119) 461 (1968) and 81, (123) 92 (1970).Google Scholar
  18. /17/.
    A. Arneodo, P.H. Coullet, E.A. Spiegel and C. Tresser, Physica 14D, 327 (1985).MathSciNetADSGoogle Scholar
  19. /18/a).
    F.T. Arecchi, V. Degiorgio and B. Querzola, Phys. Rev. Lett. 19, 1168 (1967)ADSCrossRefGoogle Scholar
  20. b).
    F. Haake, Phys. Rev. Lett. 41, 1685 (1978)ADSCrossRefGoogle Scholar
  21. c).
    F.T. Arecchi and A. Politi, Phys. Rev. lett. 45, 1215 (1980)ADSCrossRefGoogle Scholar
  22. F.T. Arecchi, A. Politi and L. Ulivi, Nuovo Cimento 71B, 119 (1982).ADSGoogle Scholar
  23. /19/.
    F.T. Arecchi, R. Meucci and W. Gadomski, Phys. Rev. Lett. 58, 2205 (1987).ADSCrossRefGoogle Scholar
  24. /20/.
    P. Glendinning and C. Sparrow, Jour. Stat. Phys. 35, 645 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  25. /21/.
    F. Argoul, A. Arneodo and P. Richetti, Phys. Lett. A120, 269 (1987).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • F. T. Arecchi
    • 1
  1. 1.Istituto Nazionale di Ottica and Dept. of PhysicsUniversity of FirenzeItaly

Personalised recommendations