Skip to main content

A Critical Overview of Liquid Metal Processing in the Foundry

  • Chapter
Foundry Processes
  • 390 Accesses

Abstract

A need for understanding surrounds many aspects of foundry processing of liquid metals. Without this information it has been difficult to optimize foundry processes. This overview of foundry processing, from melting to casting, attempts to highlight areas that would particularly benefit from improved understanding. In some cases general approaches to the acquisition of needed information are suggested in other areas only the need is stated.

Major emphasis was placed on examining the inefficiencies in cupola melting; tramp element removal (ferrous and nonferrous) and the particular need for generic methods; the origins of gas defects and possible approaches for prevention; the generation and removal of solid inclusions; and finally, the development of sensors for process control and quality assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Midland-Ross Corporation, Foundry Industry Scoping Study, Center for Metals Production, CMP Report 86–5, November 1985.

    Google Scholar 

  2. F. Neumann, “Comparative Study of Cast Iron Melting in Cupolas and Induction Furnaces,” Electrowarmer International, 29, (October 1971), 552–564.

    Google Scholar 

  3. Aluminum Casting Technology, American Foundrymen’s Society, Des Plaines, IL, 1986.

    Google Scholar 

  4. L. Plutshack, “The Value of Yield Improvement,” Paper #2, 90% Yield Seminar: Gating and Risering of Iron Castings, Foseco Inc., Cleveland, OH, 1983.

    Google Scholar 

  5. R. D. Warda, E. F. Darke and H. P. Guindon, “The True Thermal Efficiencies of Thirty Cupolas,” AFS Trans, 89, (1981), 719–730.

    Google Scholar 

  6. J. P. Graham, W. J. Pater, F. Dunn and H. J. Leyshon, “The Effects of Coke Size and Coke Type on Cupola Performance,” The British Foundryman, (May 1962), 203–218.

    Google Scholar 

  7. H. J. Leyshon, M. J. Selby and J. Briggs, “Is Large Coke Really Necessary?” Foundry, (February 1974), 52–54.

    Google Scholar 

  8. R. Cairns, “The Effect of Using Cokes of Different Size and Varying Ash Contents on the Operation of a Single and Divided Blast Cupola,” The British Foundryman, (November 1985), 449–452.

    Google Scholar 

  9. F. Danis and M. Decrop, “Influence of Blast Input, Coke Size and Melting Coke Ratios on Cupola Performance,” Foundry Trade Journal, (March 20, 1958), 319–325, (March 27, 1958), 351–358.

    Google Scholar 

  10. S. Katz, “Fuels,” Cupola Handbook, Chapter 8, American Foundrymen’s Society, Des Plaines, IL, (1984), 101–128.

    Google Scholar 

  11. N. P. Lillybeck, “Influence of Fuel Costs on Cupola Design and Operation,” Modern Casting Tech. Report, No. 7515, American Foundrymen’s Society, Des Plaines, IL, 1975; reprinted from Efficient Use of Fuels in Metallurgical Industries, Inst, of Gas Technology.

    Google Scholar 

  12. C. F. Landefeld, “Thermal Power Losses to the Cupola Shell and Tuyeres,”AFS Trans, 93, (1985), 383–88.

    Google Scholar 

  13. F. M. Degner and F. T. Kaiser, “Increasing Cupola Energy Efficiency,”AFS Trans, 88, (1980), 609–14.

    CAS  Google Scholar 

  14. H. J. Leyshon and M. J. Selby, “Oxygen in Conventional and Divided-Blast Cupola Operations,” BCIRA Report, No. 1257, March 1977.

    Google Scholar 

  15. R. T. Taft and H. R. Perkins, “Cokeless Before the 1980’s,” Foundry Trade Journal, (Aug. 17, 1978), 471–485.

    Google Scholar 

  16. S. V. Dighe, W. H. Provis, B. Buczkowski, W. J. Peck and A. D. Karp, “Plasma-Fired Cupola: An Innovation in Iron Foundry Melting,” AFS Trans, 94, (1986), 323–334.

    CAS  Google Scholar 

  17. J. P. Vanderhoeck, “Blast Conditioning—II Hot Blast,” Cupola Handbook, American Foundrymen’s Society, Des Plains, IL, (1984), 199–206.

    Google Scholar 

  18. H. Choi, “Additions of Supplementary Air to Form an Oxygenated Zone in a Cupola,” Thesis, Pennsylvania State University, March 1978.

    Google Scholar 

  19. H. J. Leyshon, “The Divided-Blast Cupola and its Development,” Conference on Cupola Operation, American Foundrymen’s Society, Des Piaines, IL, (1980), 247–261.

    Google Scholar 

  20. S. Katz and V. R. Spiranello, “Effect of Charged Aluminum on Iron Temperature, Silicon Recovery and Desulfurization in an Iron-Producing Cupola,” AFS Trans, 92, (1984), 161–172.

    CAS  Google Scholar 

  21. L. R. Radovich, P. L. Walker, Jr. and R. G. Jenkins, “Importance of Carbon Active Sites in the Gasification of Coal Chars,” Fuel, 62, (1983), 849–856.

    Article  Google Scholar 

  22. S. Katz, “Defining the Coke Properties that Directly Affect the Energy Efficiency of Cupolas,” Paper 22, 49th Int. Foundry Congress, Chicago, IL, April 1982.

    Google Scholar 

  23. B. Ozturk and R. J. Fruehan, “Formation of SiO(g), and SiS(g), from Coke,” Iron and Steel Maker (July 1987), 43–48.

    Google Scholar 

  24. R. D. Burlingame, “Metallics for Cupola Melting,” Cupola Handbook, American Foundrymen’s Society, Des Piaines, IL, (1984), 79–82.

    Google Scholar 

  25. S. Katz and C. F. Landefeld, “A Kinetic Model for Carbon Pickup in the Cupola: A Step Beyond the Levi Equation,” AFS Trans, 93, (1985), 209–214.

    CAS  Google Scholar 

  26. C. F. Landefeld and W. J. Peck, “The Relation Between Silicon Loss and Metallic Silicon in the Cupola Charge,” AFS Trans, 91, (1983), 1–6.

    CAS  Google Scholar 

  27. S. Katz and H. C. Rezeau, “The Cupola Desulfurization Process,” AFS Trans, 87, (1979), 367–376.

    CAS  Google Scholar 

  28. S. Katz and C. F. Landefeld, “Desulfurization,” Cupola Handbook, American Foundrymen’s Society, Des Piaines, IL, (1984), 351–364.

    Google Scholar 

  29. N. E. Rambush and G. B. Taylor, “A New Method of Investigating the Behavior of Charge Material in an Iron-Foundry Cupola and Some Results Obtained,” Foundry Trade Journal, (November 8, 1945), 197–212, 229–235, 253–260.

    Google Scholar 

  30. H. W. Lownie, D. E. Krause and C. T. Greenidge, “How Iron and Steel Melt in the Cupola,” AFS Trans, 60, (1952), 766–774.

    Google Scholar 

  31. M. J. Selby, “Developments in Cupola Design and Operation,” Paper No. 9, 45th Int. Foundry Congress, Budapest, Hungary, October 1978.

    Google Scholar 

  32. S. Carter and R. Carlson, “Some Variables in Acid Cupola Melting,” AFS Trans, 62, (1954), 267–281.

    Google Scholar 

  33. N. H. Keyser and W. L. Kann, Jr., “The Effect of Size of Scrap on the Tapping Temperature of a Cupola,” AFS Trans, 66, (1958), 397–398.

    Google Scholar 

  34. R. H. Nafziger, A. D. Hartman, R. F. Farrell and R. D. Burlingame, “Trends in the Quality of Ferrous Scrap as Reflected in Iron Castings: 1981–1984,” AFS Trans, 94, (1986), 417–426.

    CAS  Google Scholar 

  35. O. Angeles, G. H. Geiger and C. R. Loper, Jr., “Factors Influencing Carbon Pickup in Cast Iron,” AFS Trans, 76, (1968), 3–11.

    Google Scholar 

  36. C. R. Loper, Jr., S. L. Liu, S. Shirvani and T. H. Whitter, “The Dissolution of Carbon in Cast Iron Melts As Studied Using Commercial Carbon Raisers and Experimental Materials,” AFS Trans, 92, (1984), 323–337.

    CAS  Google Scholar 

  37. S. C. Clow, “The Effect and Control of Sulfur in Iron,” AFS Trans, 86, (1978), 401- 410.

    Google Scholar 

  38. J. W. Robison, Jr., “Ladle Treatment with Steel-Clad Metallic Calcium Wire,” Paper 35, Scaninject III, MEFOS, Lulea, Sweden, 1983.

    Google Scholar 

  39. P. Binder, W. Pulvermacher, G. Stolte and J. Rushe, “Stream Degassing and Ladle Degassing,” Ironmaking and Steelmaking, 18, (1986), 267–275.

    Google Scholar 

  40. M. Remondino, F. Pilastro, E. Natale, P. Costa and G. Peretti, “Inoculation and Spheroidizing Treatments Directly Inside the Mold,” AFS Trans, 82, (1974), 239–252.

    CAS  Google Scholar 

  41. O. Smalley, “Treatment of Nodular-Graphite Iron by the Inmold Process,” Foundry Trade Journal, (September 25, 1975), 423–430.

    Google Scholar 

  42. R. W. Heine and C. R. Loper, Jr., “Dross Formation in the Processing of Ductile Cast Iron,” AFS Trans, 74, (1966), 274–280.

    Google Scholar 

  43. P. K. Trojan, P. J. Guichelaar, W. N. Bargeron and R. A. Flinn, “An Intensive Investigation of Dross in Nodular Cast Iron,” AFS Trans, 76, (1968), 323–333.

    CAS  Google Scholar 

  44. R. I. L. Guthrie, “Addition Kinetics in Steelmaking,” Proceedings 35th Electric Furnace Conf., Iron and Steel Soc. of AIME, Warrendale, PA, (1977), 30–41.

    Google Scholar 

  45. S. A. Argyropoulos and R. I. L. Guthrie, “The Dissolution of Titanium in Liquid Steel,” Met Trans, 15B, (1984), 47–58.

    CAS  Google Scholar 

  46. S. A. Argyropoulos, “Dissolution Characteristics of Ferroalloys in Liquid Steel,” Iron and Steel Maker, (November 1984), 48–57.

    Google Scholar 

  47. W. A. Henning, “Efficiency in Desulfurization Practices: Committee 5L Report,” AFS Trans, 94, (1986), 815–821.

    CAS  Google Scholar 

  48. L. R. Farias and G. A. Irons, “A Unified Approach to Bubble-Jetting Phenomena in Powder Injection into Iron and Steel,” Met Trans, 16B, (1985), 211–225.

    CAS  Google Scholar 

  49. L-K. Chiang, G. A. Irons, W-K Lu and I. A. Cameron, “The Kinetics of Desulfurization of Hot Metal by Calcium Carbide Injection,” Process Technology Proceedings 5th Int. Iron and Steel Congress, Iron and Steel Soc. of AIME, Warrendale, PA, (1986), 441–454.

    Google Scholar 

  50. F. Leclerq, J. P. Reboul, C. Gatellier, A. Chevaillier, P. Gugliermina and A. Dufour, “Hot Metal Desulfurization by Injection of Lime,” Scaninject III, MEFOS, Lulea, Sweden, 1983.

    Google Scholar 

  51. C. F. Landefeld and S. Katz, “Kinetics of Iron Desulfurization by CaO-CaF2,”Process Technology Proceedings 5th Int. Iron and Steel Congress, Iron and Steel Soc. of AIME, Warrendale, PA, (1986), 429–440.

    Google Scholar 

  52. S. Katz and C. F. Landefeld, “Plant Studies of Continuous Desulfurization with CaO-CaF2-C,” AFS Trans, 93, (1985), 215–228.

    Google Scholar 

  53. A. Moriya, T. Nagahata, K. Ieda, K. Ichihara and M. Ishikawa, “Steel Quality Improvement by Flux Injection,” Paper 32, Scaninject III, MEFOS, Lulea, Sweden, 1983.

    Google Scholar 

  54. N. Sano, “Thermodynamic Aspects of Removing Impurity Elements from Carbon-Saturated Iron,” Symposium on Foundry Processes: Their Chemistry and Physics,” General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  55. M. Faral and H. Gaye, “Metal Slag Equilibria,” Second Int. Symp. on Metallurgical Slags and Fluxes, H. A. Fine and D. R. Gaskell, eds., The Metallurgical Society of AIME, Warrendale, PA, (1984), 159–179.

    Google Scholar 

  56. I. D. Sommerville, “The Measurement, Prediction and Use of Capacities of Metallurgical Slags,” Scaninject IV, MEFOS, Lulea, Sweden, 1986.

    Google Scholar 

  57. B. Hernandez and J. F. Wallace, “The Mechanisms of Pinhole Formation in Gray Iron,” AFS Trans, 87, (1979), 335–348.

    CAS  Google Scholar 

  58. M. Svilar and J. F. Wallace, “Removal of Aluminum from Gray Cast Iron to Reduce Pinholes,” AFS Trans, 86, (1978), 421–430.

    CAS  Google Scholar 

  59. G. K. Sigworth, “A Scientific Basis for Degassing Aluminum,” AFS Trans, 95, (1987), 73–78.

    CAS  Google Scholar 

  60. J. M. Svoboda, “Behavior of Gases in Steel Castings,”Steel Founders Research J., No. 9, (First Quarter 1985), 10–26.

    Google Scholar 

  61. M. Robinson, “Nitrogen Levels in Ductile Iron: AFS Committee 12H Report,” AFS Trans, 87, (1979), 503–508.

    CAS  Google Scholar 

  62. S. Katz, Unpublished data.

    Google Scholar 

  63. A. J. Clegg, “Aluminum Degassing Practice,” Int. Molten Aluminum Processing, American Foundrymen’s Society, Des Plaines, IL, (1986), 369–380.

    Google Scholar 

  64. K. Schwerdtfeger and H. G. Shubert, “Solubility of Nitrogen in CaO-Al2O3 Melts in Graphite Crucibles at 1600°C,” Arch. Eisenhiittenwes, 45, (1974), 649–655.

    CAS  Google Scholar 

  65. K. Schwerdtfeger and H. G. Schubert, “Solubility of Nitrogen and Carbon in CaO-A12O3 Melts in the Presence of Graphite,” Met Trans, 8B, (1977), 535–540.

    CAS  Google Scholar 

  66. K. Schwerdtfeger, W. Fix and G. H. Schubert, “Solubility of Nitrogen in CaO-SiO2-AI2O3 Slag in the Presence of Graphite at 1450°C,” Ironmaking and Steelmaking, (1978), No. 2, 67–71.

    Google Scholar 

  67. “Secondary Steelmaking,” Metallurgical Society, London, 1978.

    Google Scholar 

  68. I. D. Sommerville, “The Capacities and Refining Capabilities of Metallurgical Slags,” Symposium on Foundry Processes: Their Chemistry and Physics,” General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  69. J. F. Janowak, R. B. Gundlach, G. T. Eldes and K. Röhrig, “Technical Advances in Cast Iron Metallurgy,” AFS International Cast Metals J., (December 1981), 28–42.

    Google Scholar 

  70. J. F. Wallace, “Effects of Minor Elements on the Structure of Cast Irons,” AFS Trans, 88, (1975), 363–377.

    Google Scholar 

  71. A. Kagawa and T. Okamoto, “Theoretical Calculations of Eutectic Temperature and Composition in Iron-Carbon Ternary and Multicomponent Alloys,” J. Mat. Sci., 22, (1987), 643–650.

    Article  CAS  Google Scholar 

  72. R. B. Gundlach, J. F. Janowak, S. Bechet and K. Rohrig, “On the Problems with Carbide Formation in Gray Cast Iron,” Third Int. Symp. on the Physical Metallurgy of Cast Iron, Sodertalje, Sweden, August 29–31, 1984.

    Google Scholar 

  73. J. C. Sawyer and J. F. Wallace, “Effects of Neutralization of Trace Elements in Gray and Ductile Iron, Part 2,” AFS Trans, 79, (1971), 386–404.

    Google Scholar 

  74. D. N. Pocklington, “Removal of Residuals from Liquid Steel-Practical Limitations and Potential Techniques,” Ironmaking and Steelmaking, 12, (1985), 289.

    CAS  Google Scholar 

  75. R. B. Coates and H. J. Leyshon, “Refining Molten Iron by Chlorine Treatment,” BCIRA Journal, 11, (July 1963), 451–457.

    CAS  Google Scholar 

  76. R. N. Andrews, J. B. Andrews and C. A. Andrews, “Removal of Excess Manganese from Gray Iron Using Polyvinylchloride as a Chlorine Source,” AFS Trans, 92, (1984), 505–514.

    CAS  Google Scholar 

  77. R. E. Brown, H. V. Makar and R. J. Divilo, “Refining Molten Iron by Sulfide-Forming Slags and Chlorination,” Reports of Investigations, 8065, U.S. Bureau of Mines, Washington, DC, (1975).

    Google Scholar 

  78. F. Tsukihashi, A. Werme, F. Matsumoto, A. Kasahara, M. Yukinobu, T. Hyodo, S. Shiomi and N. Sano, “Thermodynamics of the Soda Slag System for Hot Metal Treatment,” Second Int. Symp. on Metallurgical Slags and Fluxes, H. A. Fine and D. R. Gaskell, eds., The Metallurgical Society of AIME, Warrendale, PA, (1984), 89–106.

    Google Scholar 

  79. H. V. Makar and R. E. Brown, “Upgrading Copper-Contaminated Ferrous Scrap by Treatment with Sodium Sulfate,” AFS Trans, 82, (1974), 45–54.

    CAS  Google Scholar 

  80. X. Liu and J. H. E. Jeffes, “Effect of Sodium Sulfide on Removal of Copper and Tin from Molten Iron,” Ironmaking and Steelmaking, 12, (1985), 293–294.

    CAS  Google Scholar 

  81. T. Okazaki and D. G. C. Robertson, “Removal of Tramp Elements: Mathematical Modelling,” Ironmaking and Steelmaking, 12, (1985), 295–298.

    CAS  Google Scholar 

  82. T. Imari and N. Sano, Tetsu-to-Hagane, 72, (1986), S962.

    Google Scholar 

  83. M. Köhler and H-J. Engell, “Partition Equilibria of Tramp Elements Between Iron Melts and Calcium-Halide Slags,” Second Int. Symp. on Metallurgical Slags and Fluxes, H. A. Fine and D. R. Gaskell, eds., The Metallurgical Society of AIME, Warrendale, PA, (1984), 483–496.

    Google Scholar 

  84. J. Szekely, T. Lehner and C. W. Chang, “Flow Phenomena, Mixing and Mass Transfer in Argon Stirred Ladles,” Ironmaking and Steelmaking, (1979), No. 6, 285–293.

    Google Scholar 

  85. T. DebRoy and A. K. Majumdar, “Predicting Fluid Flow in Gas-Stirred Systems,” J. Metals, (November 1981), 42–48.

    Google Scholar 

  86. M. Sano and K. Mori, “Fluid Flow and Mixing Characteristics in Gas Stirred Molten Metal Bath,” Trans ISIJ, 23, (1983), 169–175.

    Article  Google Scholar 

  87. D. Mazumdar and R. I. L. Guthrie, “Mixing Models for Gas Stirred Metallurgical Reactors,” Met Trans, 17B, (1986), 725–733.

    CAS  Google Scholar 

  88. S. Asai, T. Okamoto, J. C. He and I. Muchi, “Mixing Time of Refining Vessels Stirred by Gas Injection,” Trans ISIJ, 23, (1983), 43–50.

    Article  Google Scholar 

  89. N. El-Kaddah and J. Szekely, “Mathematical Model for Desulfurization Kinetics in Argon-Stirred Ladles,” Ironmaking and Steelmaking, (1981), No. 6, 269–278.

    Google Scholar 

  90. G. M. Marrone and D. J. Kirwan, “Mass Transfer to Suspended Particles in Gas-Liquid Agitated Systems,” AIChE Journal, 32, (1986), 523–525.

    Article  CAS  Google Scholar 

  91. G. K. Sigworth and T. A. Engh, “Chemical and Kinetic Factors Related to Hydrogen Removal from Aluminum,” Met Trans, 13B, (1982), 447–460.

    CAS  Google Scholar 

  92. T. DebRoy, N. H. El-Kaddah and D. G. C. Robertson, “Mixed Transport Control of Gas-Liquid Metal Reactions,” Met Trans, 8B, (1977), 271–277.

    Google Scholar 

  93. S. Ohguchi and D. G. C. Robertson, “Kinetic Model for Refining by Submerged Powder Injection: Part I Transistory and Permanent Contact Reactions,” Ironmaking and Steelmaking, 11, (1984), 262–273.

    CAS  Google Scholar 

  94. S. H. Kim and R. J. Fruehan, “Physical Modeling of Liquid/Liquid Mass Transfer in Gas Stirred Ladles,” Met Trans, 18B, (1987), 381–389.

    CAS  Google Scholar 

  95. R. W. Monroe, “Gas Holes in Iron and Steel Castings,”Steel Founders Research J., No. 3, (Third Quarter 1983), 5–12.

    Google Scholar 

  96. C. Bodsworth, “Technological Means for Removal of Tramp Elements,” Ironmaking and Steelmaking, 12, (1985), 290–292.

    CAS  Google Scholar 

  97. E. Bossing, “Aluminum Aerospace Castings — 25 Years in Review,” International Molten Aluminum Processing, American Foundrymen’s Soc., Des Plaines, IL, (1986), 1–30.

    Google Scholar 

  98. Recycled Metals in the 1980 s, National Association Recycling Industries, New York, NY, 1982.

    Google Scholar 

  99. D. Montagna and H. V. Makar, “Method for Wrought and Cast Aluminum Separation,” U.S. Patent, 4,330,090, May 18, 1982.

    Google Scholar 

  100. K. A. Bowman, “Alcoa’s Used Beverage Can (UBC), Alloy Separation Process,” Recycle and Secondary Recovery of Metals, P. R. Taylor, H. Y. Sohn and N. Jarrett, eds., The Metallurgical Soc. of AIME, Warrendale, PA, (1985), 429–444.

    Google Scholar 

  101. D. V. Neff, “Impurity Control in Aluminum Alloy Melting Processes Using the Gas Injection Pump,” International Molten Aluminum Processing, American Foundry- men’s Soc., Des Plaines, IL, (1986), 341–368.

    Google Scholar 

  102. G. K. Sigworth and T. A. Engh, “Refining of Liquid Aluminum — A Review of Important Chemical Factors,” Scandinavian J. Metallurgy, 11, (1982), 143–149.

    CAS  Google Scholar 

  103. J. H. L. VanLinden, R. E. Miller and R. Bachowski, “Chemical Impurities in Aluminum,” Symposium on Foundry Processes: Their Chemistry and Physics, General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  104. B. L. Tiwari, “Demagging Processes for Aluminum Alloy Scrap,” J. Metals, 34, No. 9, (1982), 54–58.

    CAS  Google Scholar 

  105. M. R. Smith, “The Present Status of the Derham Process for Magnesium Removal in Secondary Aluminum Smelting,” Conservation and Recycling, 6, No. 1–2, (1983), 33–40.

    Article  CAS  Google Scholar 

  106. B. L. Tiwari and R. A. Sharma, “Electrolytic Removal of Aluminum from Scrap Aluminum,” J. Metals, 36, No. 7, (1984), 41–43.

    Google Scholar 

  107. B. L. Tiwari, B. J. Howie and R. M. Johnson,“Electrolytic Demagging of Secondary Aluminum in a Prototype Furnace,” AFS Trans, 94, (1986), 385–390.

    CAS  Google Scholar 

  108. P. D. Hess and G. K. Turnbull, “Effects of H on Properties of A1 Alloys,” Hydrogen in Metals, I. M. Berstein and A. W. Thompson, eds., ASM, Metals Park, OH, (1974), 277–87.

    Google Scholar 

  109. K. Kubo and R. D. Pehlke, “Mathematical Modeling of Porosity Formation in Solidification,” Met Trans, 16B, (1985), 359–365.

    CAS  Google Scholar 

  110. C. N. Cochran, D. L. Belitskus and D. L. Kinosz, “Oxidation of Aluminum-Magnesium Melts in Air, Oxygen, Flue Gas and Carbon Dioxide,” Met Trans, 8B, (1977), 323–332.

    CAS  Google Scholar 

  111. W. Theile, “The Oxidation of Aluminum and Aluminum Alloy Melts,” Aluminum, 38, (1962), 707–715.

    Google Scholar 

  112. W. R. Opie and W. J. Grant, “Hydrogen Solubility in Aluminum and Some Aluminum Alloy,” Trans AIME, 188, (1950), 1237–1241.

    CAS  Google Scholar 

  113. R. Y. Lin and M. Hoch, “Solubility of Hydrogen in Molten Aluminum Alloys,” TMS-AIME Annual Meeting, New Orleans, LA, 1986.

    Google Scholar 

  114. A. R. Romero, J. Harkki and D. Janke, “Oxygen and Carbon Sensing in Fe-O-C and Fe-O-C-X Melts at Elevated Carbon Contents,” Steel Research, 57, (1986), 636–686.

    CAS  Google Scholar 

  115. S. C. Ghorpade, R. W. Heine and C. R. Loper, Jr., “Oxygen Probe Measurements in Cast Irons,” AFS Trans, 83, (1975), 193–198.

    Google Scholar 

  116. K. Ichihara, D. Janke and H-J. Engell, “A New Silicon Sensor for Hot Metal Measurements,” Steel Research, 57, (1986), 166–187.

    CAS  Google Scholar 

  117. D. Janke, “Basic Considerations on the Design of Oxygen Probes for Continuous Measurements in Steel Melts,” Arch. Eisenhuttenwes, 54, (1983), 259- 266.

    CAS  Google Scholar 

  118. K. Nagata, N. Tsuchiya, M. Sumito and K. S. Goto, “Oxygen Potentials in Liquid Pig Iron and Slag and Analysis of Reactions in the Blast Furnace by Means of Affinities of the Reactions,” Tetsu-to-Hagane, 68, (1982), 2271–2278.

    CAS  Google Scholar 

  119. S. Katz, D. E. Mclnnes, D. L. Brink and G. A. Wilkinson, “Determination of Aluminum in Malleable Iron from Measured Oxygen,” AFS Trans, 88, (1980), 835–844.

    CAS  Google Scholar 

  120. P. D. Hess, “Methods for Determining Hydrogen in Aluminum Alloys,” Light Metals 1972, The Metallurgical Society, AIME, Warrendale, PA, (1972), 367–85.

    Google Scholar 

  121. R. Gee and D. J. Fray, “Instantaneous Determination of Hydrogen Content in Molten Aluminum and Its Alloys,” Met Trans, 9B, (1978), 427–430.

    CAS  Google Scholar 

  122. B. L. Tiwari, unpublished data.

    Google Scholar 

  123. P. C. Yao and D. J. Fray, “Determination of the Lithium Content of Molten Aluminum Using a Solid Electrolyte,” Met Trans, 16B, (1985), 41–46.

    CAS  Google Scholar 

  124. A. A. Debreuil and A. D. Pelton, “Probes for the Continuous Monitoring of Sodium and Lithium in Molten Aluminum,” Light Metals 1985, The Metallurgical Society of AIME, Warrendale, PA, (1985), 1197–1205.

    Google Scholar 

  125. R. J. Brisley and D. J. Fray, “Determination of the Sodium Activity in Aluminum and Aluminum-Silicon Alloys Using Sodium Beta Alumina,” Met Trans, 14B, (1983), 435–440.

    CAS  Google Scholar 

  126. B. L. Tiwari and B. J. Howie, “Electrochemical Probe for Measuring Magnesium Concentration in Molten Aluminum,” U.S. Patent 4,601,810, July 22, 1986.

    Google Scholar 

  127. E. F. Ryntz, Jr., R. E. Schroeder, W. W. Chaput and W. O. Rassenfoss, “The Formation of Blowholes in Nodular Iron Castings,” AFS Trans, 91, (1983), 139–144.

    Google Scholar 

  128. R. J. Fruehan, Ladle Metallurgy Principles and Practice, Iron and Steel Society of AIME, Warrendale, PA, 1985.

    Google Scholar 

  129. E. T. Turkdogan and R. J. Fruehan, “Review of Oxygen Sensors for Use in Steelmaking and of Deoxidation Equilibrium,” CIM Quarterly, Vol. II, (1972), 371–379.

    Google Scholar 

  130. S. F. Carter, W. J. Evans, J. C. Harkness and J. F. Wallace, “Factors Influencing the Formation of Pinholes in Gray and Ductile Iron,” AFS Trans, 87, (1979), 245–268.

    CAS  Google Scholar 

  131. R. V. Naik and J. F. Wallace, “Surface Tension-Nucleation Relations in Cast Iron Pinhole Formation,” AFS Trans, 88, (1980), 367–388.

    CAS  Google Scholar 

  132. F. Chen and J. Keverian, “Effect of Nitrogen on Subsurface Pinholes in Steel Castings,” AFS Trans, 74, (1966), 281–289.

    Google Scholar 

  133. A. Kagawa and T. Okamoto, “Partition of Nitrogen in Hypo-Eutectic and Nearly Eutectic Iron-Carbon Alloys,” Trans Japan Inst, of Metals, 22, No. 2, (1981), 137–143.

    CAS  Google Scholar 

  134. A. Kagawa and T. Okamoto, “Behavior of Nitrogen in Solidifying Cast Iron,” Trans Japan Foundrymen’s Society, 2, (1983), 12–15.

    Google Scholar 

  135. A. Kagawa and T. Okamoto, “Partition of Alloying Elements in Freezing Cast Irons and Its Effect on Graphitization and Nitrogen Blowhole Formation,” Symposium on Foundry Processes: Their Chemistry and Physics, General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  136. S. Yamada, H. Kubota and E. Kato, “Gas Defects in Steel Castings Caused by Phenol Urethane Cold Box Cores,” Imono, 57, No. 3, (1985), 23–27.

    Google Scholar 

  137. C. Locke and R. L. Ashbrook, “Nature of Mold Gases, A Review,” AFS Trans, 80, (1972), 91–104.

    Google Scholar 

  138. W. D. Scott and C. E. Bates, “Decomposition of Resin Binders and the Relationship Between Gases Formed and the Casting Surface Quality,” AFS Trans, 83, (1975), 519–524.

    Google Scholar 

  139. E. T. Turkdogan, “Physicochemical Phenomena of Mechanisms and Rates of Reactions in Melting, Refining and Casting of Foundry Irons,” Symposium on Foundry Processes: Their Chemistry and Physics, General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  140. S. Yamamoto, Y. Kawano, Y. Murakami, B. Cheng and R. Ozaki, “Producing Spheroidal Graphite Cast Iron by Suspension of Gas Bubbles in Melts,” AFS Trans, 83, (1975), 217–226.

    Google Scholar 

  141. R. W. Heine, “Oxidation-Reduction Principles Controlling the Composition of Cast Irons,” AFS Trans, 59, (1951), 121–138.

    Google Scholar 

  142. R. W. Heine and C. R. Loper, Jr., “Dross Formation in the Processing of Ductile Cast Iron,” AFS Trans, 74, (1966), 274–280.

    Google Scholar 

  143. L. J. Gauckler, M. M. Waeber, C. Conti and M. Jacob-Duliere, “Ceramic Foam for Molten Metal Filtration,” J. Metals, (September 1985), 47–51.

    Google Scholar 

  144. E. T. Turkdogan, “Ladle Deoxidation, Desulfurization and Inclusions in Steel — Part I: Fundamentals,” Arch Eisenhiittenwes, 54, No. 1, (1983), 1–10.

    CAS  Google Scholar 

  145. A. Nicholson and T. Gladman, “Non-Metallic Inclusions and Developments in Secondary Steelmaking,” Ironmaking and Steelmaking, 13, No. 2, (1986), 53–69.

    CAS  Google Scholar 

  146. K. Yonekura, Y. Yamammoto, M. Nakamura, M. Nakamichi, H. Yoshioka and M. Ohashi, “Finding the Source of Sand Inclusions Using Tracing Sands,” AFS Trans, 94, (1986), 277–284.

    CAS  Google Scholar 

  147. W. O. Philbrook, “Oxide Inclusions in Steel (A), Oxygen Reactions with Liquid Steel,” Int. Metals Rev., L. H. VanVlack, ed., ASM, Metals Park, OH, (1977), 187–201.

    Google Scholar 

  148. D. Apelian, C. E. Ekert, R. Mutharasen and R. E. Miller, “Refining Molten Aluminum by Filtration Technology,” Refining and Alloying of Liquid Aluminum and Ferro-Alloys, T. A. Engh, S. Lyng and H. A. Oye, eds., Norwegian Inst. Technology, Trondheim, 1985.

    Google Scholar 

  149. A. M. Arzt, “Filtration of Ferrous Metals,” Modern Casting (March 1986), 24–26.

    Google Scholar 

  150. S. Ali, R. Mutharasen and D. Apelian, “Physical Refining of Steel Melts by Filtration,” Met Trans, 16B, (1985), 725–742.

    CAS  Google Scholar 

  151. A. Aubrey, J. Brockmeyer and P. F. Wieser, “Dross Removal from Ductile Iron with Ceramic Foam Filters,” AFS Trans, 93, (1985), 171.

    CAS  Google Scholar 

  152. A. Ilhan, I. Dutta, J. Brockmeyer and P. F. Wieser, “Cast Steel Quality Improvement by Filtration with Ceramic Foam Filters,” AFS Trans, 93, (1985), 177.

    Google Scholar 

  153. D. A. Doutre, “The Development and Application of a Rapid Method of Evaluating Molten Metal Cleanliness,” PhD Thesis, McGill University, 1984.

    Google Scholar 

  154. T. L. Mansfield, “Molten Aluminum Quality Measured with Reynolds 4M™ System,” Light Metals 1984, The Metallurgical Society of AIME, (1984), 1305–1328.

    Google Scholar 

  155. R. I. L. Guthrie and D. A. Doutre, “On-Line Measurement of Inclusions in Liquid Metals,” Int. Seminar on Refining and Alloying of Liquid Aluminum and Ferro-Alloys, T. A. Engh, S. Lyng and H. A. Oye, eds., Norwegian Inst. Technology, Trondheim, 1985.

    Google Scholar 

  156. R. I. L. Guthrie, “On the Detection, Behavior and Control of Second Phase Particles in Liquid Metals,”Symposium on Foundry Processes: Their Chemistry and Physics, General Motors Research Laboratories, Warren, MI, September 21–23, 1986.

    Google Scholar 

  157. W.J. Williams, “A Study of Some Metallurgical Factors Influencing Chill and Mottle Formation in Gray Iron,” BCIRA Journal of Research and Development, 4, (1952), 403.

    CAS  Google Scholar 

  158. T. Wolverson, “Ultra-Light Iron Castings for the Motor Industry,” British Foundryman, 1, (August 1957), 395.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Katz, S., Tiwari, B.L. (1988). A Critical Overview of Liquid Metal Processing in the Foundry. In: Katz, S., Landefeld, C.F. (eds) Foundry Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1013-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1013-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8292-1

  • Online ISBN: 978-1-4613-1013-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics