Axoplasmic Transport in Olfactory Receptor Neurons

  • Dieter G. Weiss
  • Klaus Buchner


The function of a cell can only be fully understood through the knowledge of the internal machinery acting both in preserving the cell’s shape and biochemical integrity and in maintaining the specific requirements of any highly specialized cell. Because nerve cells are made to convey information over long distances along their axons, knowledge of the internal mechanisms necessary to extend these long processes, to nourish them, and to establish regional differences in both macromolecular composition and metabolism is essential for the understanding of the function of the neuron in the physiological context. With this in mind, we believe that axoplasmic transport is one important facet to be studied for a thorough understanding of a specialized cell, such as the olfactory receptor neuron.


Olfactory Bulb Axonal Transport Olfactory Epithelium Olfactory System Retrograde Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. D., Allen, N. S., and Travis, J. L., 1981a, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. 1:291–302.PubMedCrossRefGoogle Scholar
  2. Allen, R. D., Travis, H. L., Allen, N. S., and Yilmaz, H., 1981b, Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to detection of birefringence in the motile reticulopodial network of Allogromia laticollaris, Cell Motil. 1:275–289.PubMedCrossRefGoogle Scholar
  3. Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T., and Gilbert, S. P., 1982, Fast axonal transport in squid giant axon, Science 218:1127–1129.PubMedCrossRefGoogle Scholar
  4. Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M., 1985, Gliding movement of and bidirectional transport along native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport, J. Cell Biol. 100:1736–1752.PubMedCrossRefGoogle Scholar
  5. Baitinger, C., Levine, J., Lorenz, T., Simon, C., Skene, P., and Willard, M., 1982, Characteristics of axonally transported proteins, in: Axoplasmic Transport (D.G. Weiss, ed.), pp. 110–120, Springer-Verlag, Berlin.Google Scholar
  6. Baker, H., and Spencer, R. F., 1986, Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat, Exp. Brain Res. 63:461–473.PubMedCrossRefGoogle Scholar
  7. Buchner, K., 1986, Vergleich von anterogradem und retrogradem axonalen Transport im Riechnerv des Hechtes, Ph.D. thesis, University Munich, Federal Republic of Germany.Google Scholar
  8. Buchner, K., and Weiss, D. G., 1983, Anterograde and retrograde axoplasmic transport of exogenous proteins in C-fibers, J. Neurochem. 41(Suppl.):S96.Google Scholar
  9. Buchner, K., Gulden, J., and Weiss, D. G., 1984, Bidirectional cytoplasmic transport of organelles in olfactory nerve axons: An AVEC-DIC study, in: International Cell Biology 1984-1985 (S. Seno, and Y. Okada, eds.), p. 491, Academic, Tokyo.Google Scholar
  10. Buchner, K., Gulden, J., and Weiss, D. G., 1985, An AVEC-DIC study on the movement of organelles in olfactory nerve axons, Eur. J. Cell Biol. 36(Suppl.)7:12.Google Scholar
  11. Buchner, K., Seitz-Tutter, D., Schonitzer, K., and Weiss, D. G., 1987, A quantitative study of anterograde and retrograde axoplasmic transport of exogenous proteins in olfactory nerve C-fibers, Neuroscience 22:697–707.PubMedCrossRefGoogle Scholar
  12. Buchner, K., Seitz-Tutter, D., and Weiss, D. G., Bidirectional movement of large organelles in very thin axons: An EM and AVEC-DIC study (in preparation).Google Scholar
  13. Burton, P. R., 1985, Ultrastructure of the olfactory neuron of the bullfrog: The dendrite and its microtubules, J. Comp. Neurol. 242:147–160.PubMedCrossRefGoogle Scholar
  14. Burton, P. R., and Laveri, L. A., 1985, The distribution, relationships to other organelles, and calciumsequestering ability of smooth endoplasmic reticulum in frog olfactory axons,J. Neurosci. 5:3047–3060.PubMedGoogle Scholar
  15. Burton, P. R., and Paige, J. L., 1981, Polarity of axoplasmic microtubules in the olfactory nerve of the frog, Proc. Natl. Acad. Sci. USA 78:3269–3273.PubMedCrossRefGoogle Scholar
  16. Cancalon, P., 1979a, Influence of temperature on the velocity and on the isotope profile of slowly transported labeled proteins, J. Neurochem. 32:997–1007.PubMedCrossRefGoogle Scholar
  17. Cancalon, P., 1979b, Subcellular and polypeptide distributions of slowly transported proteins in the garfish olfactory nerve, Brain Res. 161:115–130.PubMedCrossRefGoogle Scholar
  18. Cancalon, P., 1982, Slow flow in axons detached from their perikarya, J. Cell. Biol. 95:989–992.PubMedCrossRefGoogle Scholar
  19. Cancalon, P., 1984, Role of slow flow in axonal degeneration and regeneration, in: The Role of Axonal Transport in Neuronal Growth and Regeneration (J. Elam and P. Cancalon, eds.), pp. 211–242, Plenum, New York.Google Scholar
  20. Cancalon, P., 1985, Influence of temperature on various mechanisms associated with neuronal growth and nerve regeneration, Prog. Neurobiol. 25:27–92.PubMedCrossRefGoogle Scholar
  21. Cancalon, P., and Beidler, L. M., 1975, Distribution along the axon and into various subcellular fractions of molecules labeled with 3H leucine and rapidly transported in the garfish olfactory nerve, Brain Res. 89:225–244.PubMedCrossRefGoogle Scholar
  22. Cancalon, P., and Elam, J. S., 1980, Rate and composition of rapidly transported proteins in regenerating olfactory nerves, J. Neurochem. 35:889–897.PubMedCrossRefGoogle Scholar
  23. Cancalon, P., Elam, J. S., and Beidler, L. M., 1976, SDS gel electrophoresis of rapidly transported proteins in garfish olfactory nerve, J. Neurochem. 27:687–693.PubMedCrossRefGoogle Scholar
  24. Chakraborty, G., Leach, T., Zanakis, M. F., and Ingoglia, N. A., 1986, Posttranslational protein modification by amino acid addition in regenerating optic nerves of goldfish, J. Neurochem. 46:726–732.PubMedCrossRefGoogle Scholar
  25. Cole, G. J., and Elam, J. S., 1983, Characterization of axonally transported glycoproteins in regenerating garfish olfactory nerve, J. Neurochem. 41:691–702.PubMedCrossRefGoogle Scholar
  26. Cooper, P. D., and Smith, R. S., 1974, The movement of optically detectable organelles in myelinated axons of Xenopus laevis, J. Physiol (Lond.) 242:77–97.Google Scholar
  27. Costanzo, R. M., 1985, Neuronal regeneration and functional reconnection following olfactory nerve transection in hamster, Brain Res. 361:258–266.PubMedCrossRefGoogle Scholar
  28. Csanyi, V., Gervai, J., and Lajtha, A., 1973, Axoplasmic transport of free amino acids, Brain Res. 56:271–284.PubMedCrossRefGoogle Scholar
  29. Di Giamberardino, L., 1971, Independence of the rapid axonal transport of protein from the flow of free amino acids, Acta Neuropathol Suppl. V: 132-135.Google Scholar
  30. Easton, D. M., 1971, Garfish olfactory nerve: Easily accessible source of numerous long, homogeneous, nonmyelinated axons, Science 172:952–955.PubMedCrossRefGoogle Scholar
  31. Edstrom, A., and Hanson, M., 1973, Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves, Brain Res. 58:345–354.PubMedCrossRefGoogle Scholar
  32. Elam, J. S., 1984, Axonal transport of glycoproteins in regenerating nerve, in: Axonal Transport in Neuronal Growth and Regeneration (J.S. Elam, and P. Cancalon, eds.), pp. 87–104, Plenum, New York.Google Scholar
  33. Elam, J. S., and Agranoff, B. W., 1971, Rapid transport of protein in the optic system of the goldfish, J. Neurochem. 18:375–387.PubMedCrossRefGoogle Scholar
  34. Elam, J.S., and Cancalon, P. (eds.), 1984, Axonal Transport in Neuronal Growth and Regeneration, Plenum, New York.Google Scholar
  35. Esiri, M. M., and Tomlinson, A. H., 1984, Herpes simplex encephalitis. Immunohistological demonstration of spread of virus via olfactory and trigeminal pathways after infection of facial skin in mice, J. Neurol. Sci. 64:213–217.PubMedCrossRefGoogle Scholar
  36. Fink, D. J., and Gainer, H., 1980a, Axonal transport of proteins: A new view using in vivo covalent labeling, J. Cell Biol. 85:175–186.PubMedCrossRefGoogle Scholar
  37. Fink, D. J., and Gainer, H., 1980b, Retrograde axonal transport of endogenous proteins in sciatic nerve demonstrated by covalent labeling in vivo, Science 208:303–305.PubMedCrossRefGoogle Scholar
  38. Forman, D. S., Padjen, A. L., and Siggins, G. R., 1977, Axonal transport of organelles visualized by light microscopy: Cinematographic and computer analysis, Brain Res. 136:197–213.PubMedCrossRefGoogle Scholar
  39. Gasser, H. S., 1956, Olfactory nerve fibers, J. Gen. Physiol. 39:473–496.PubMedCrossRefGoogle Scholar
  40. Giorgi, P. P., 1978, Relationship between axonal transport and the Wolfgram proteins of myelin, Proc. Eur. Soc. Neurochem. 1:118.Google Scholar
  41. Giorgi, P. P., Karlsson, J.-O., Sjdstrand, J., and Field, E. J., 1973, Axonal flow and myelin protein in the optic pathway, Nature (New Biol.) 244:121–124.Google Scholar
  42. Grafstein, B., and Forman, D.S., 1980, Intracellular transport in neurons, Physiol. Rev. 60:1167–1283.PubMedGoogle Scholar
  43. Graziadei, P. P. C., and Monti Graziadei, G. A., 1978, The olfactory system: A model for the study of neurogenesis and axon regeneration in mammals, in: Neuronal Plasticity (C.W. Cotman, ed.), pp. 131–153, Raven, New York.Google Scholar
  44. Gross, G. W., and Beidler, L. M., 1973, Fast axonal transport in the C-fibers of the garfish olfactory nerve, J. Neurobiol. 4:413–428.PubMedCrossRefGoogle Scholar
  45. Gross, G. W., and Beidler, L. M., 1975, A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve, J. Neurobiol. 6:213–232.PubMedCrossRefGoogle Scholar
  46. Gross, G. W., and Kreutzberg, G. W., 1978, Rapid axoplasmic transport in the olfactory nerve of the pike. I. Basic transport parameters for proteins and amino acids, Brain Res. 139:65–76.PubMedCrossRefGoogle Scholar
  47. Hara, T. J., 1975, Olfaction in fish, Prog. Neurobiol. 5:217–335.CrossRefGoogle Scholar
  48. Jastreboff, P. J., Pederson, P. E., Greer, C. A., Stewart, W. B., Kauer, J. S., Benson, T. E., and Shepherd, G. M., 1984, Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb, Proc. Natl. Acad. Sci. USA 81:5250–5254.PubMedCrossRefGoogle Scholar
  49. Karlsson, J.-O., 1977, Is there an axonal transport of amino acids? J. Neurochem. 29:615–617.PubMedCrossRefGoogle Scholar
  50. Karlsson, J.-O., 1983, Axonal transport in retinal ganglion cells, in: Progress in Retinal Research, Vol. 3 (N.N. Osborne and G.J. Chader, eds.), pp. 84–96, Pergamon, New York.Google Scholar
  51. Kauer, J. S., 1981, Olfactory receptor cells staining using horseradish peroxidase, Anat. Rec. 200:331–336.PubMedCrossRefGoogle Scholar
  52. Koike, H., and Nagata, Y., 1979, Intra-axonal diffusion of (3H)-acetylcholine and (3H)-γ-aminobutyric acid in a neurone of Aplysia, J. Physiol. (Lond.) 295:397–417.Google Scholar
  53. Kream, R. M., and Margolis, F. L., 1984, Olfactory marker protein: Turnover and transport in normal and regenerating neurons, J. Neurosci. 4:868–879.PubMedGoogle Scholar
  54. Kreutzberg, G. W., and Gross, G. W., 1977, General morphology and axonal ultrastructure of the olfactory nerve of the pike, Esox lucius, Cell Tissue Res. 181:443–457.Google Scholar
  55. Kristensson, K., 1982, Implications of axoplasmic transport for the spread of virus infections in the nervous system, in: Axoplasmic Transport in Physiology and Pathology (D.G. Weiss and A. Gorio, eds.), pp. 153–158, Springer-Verlag, Berlin.Google Scholar
  56. Land, L. J., and Shepherd, G. M., 1974, Autoradiographic analysis of olfactory receptor projections in the rabbit, Brain Res. 70:506–510.PubMedCrossRefGoogle Scholar
  57. La Vail, J. H., and Margolis, T. P., 1987, The anterograde axonal transport of wheat-germ agglutinin as a model for transcellular transport in neurons, in: Axonal Transport (R.S. Smith and M.A. Bisby, eds.), pp. 311–326, Liss, New York.Google Scholar
  58. Luduena, R. F., 1979, Biochemistry of tubulin, in: Microtubules (K. Roberts and J.S. Hyams, eds.), pp. 65–116, Academic, London.Google Scholar
  59. Lundh, B., Kristensson, K., and Norrby, E., 1987, Selective infections of olfactory and respiratory epithelium by vesicular stomatitis and Sendai viruses, Neuropathol. Appl. Neurobiol. 13:111–122.PubMedCrossRefGoogle Scholar
  60. Margolis, F., 1972, A brain protein unique to the olfactory bulb, Proc. Natl. Acad. Sci. USA 69:1221–1224.PubMedCrossRefGoogle Scholar
  61. Margolis, F. L., 1980, Carnosine: An olfactory neuropeptide, in: Role of Peptides in Neuronal Function (J.L. Barker and T. Smith, eds.), pp. 545–572, Dekker, New York.Google Scholar
  62. Margolis, F. L., and Grillo, M., 1977, Axoplasmic transport of carnosine ((J-alanyl-L-histidine) in the mouse olfactory pathway, Neurochem. Res. 2:507–519.CrossRefGoogle Scholar
  63. Margolis, F. L., Sydor, W., Teitelbaum, Z., Blacher, R., Grillo, M., Rogers, K., Sun, R., and Gubler, U., 1985, Molecular biological approaches to the olfactory system: Olfactory marker protein as a model, Chem. Senses 10:163–174.CrossRefGoogle Scholar
  64. McEwen, B. S., and Grafstein, B., 1968, Fast and slow components in axonal transport of protein, J. Cell. Biol. 38:494–508.PubMedCrossRefGoogle Scholar
  65. Monath, T. P., Cropp, C. B., and Harrison, A. K., 1983, Model of entry of a neurotropic arbovirus into the central nervous system, Lab. Invest. 48:399–410.PubMedGoogle Scholar
  66. Munoz-Martmez, E. J., Nunez, R., and Sanderson, A., 1981, Axonal transport: A quantitative study of retained and transported protein fraction in the cat, J. Neurobiol. 12:15–26.CrossRefGoogle Scholar
  67. Muralt, A. von, Weibel, E. R., and Howarth, J. V., 1976, The optical spike. Structure of the olfactory nerve of pike and rapid birefringence changes during excitation, Pflugers Arch. 367:67–76.PubMedCrossRefGoogle Scholar
  68. Neale, J. H., Elam, J. S., Neale, E. A., and Agranoff, B. W., 1974, Axonal transport and turnover of prolineand leucine-labeled protein in the goldfish visual system, J. Neurochem. 23:1045–1055.PubMedCrossRefGoogle Scholar
  69. Ochs, S., 1971, Local supply of energy to the fast axoplasmic transport mechanism, Proc. Natl. Acad. Sci. USA 68:1279–1282.PubMedCrossRefGoogle Scholar
  70. Ochs, S., 1972, Rate of fast axoplasmic transport in mammalian nerve fibers, J. Physiol. (Lond.) 227:627–645.Google Scholar
  71. O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250:4007–4021.PubMedGoogle Scholar
  72. Price, C. H., McAdoo, D. J., Farr, W., and Okuda, R., 1979, Bidirectional axonal transport of free glycine in identified neurons R3-R14 of Aplysia, J. Neurobiol. 10:551–571.PubMedCrossRefGoogle Scholar
  73. Schliwa, M., Ezzel, R. M., and Euteneuer, U., 1984, Erythro-9-[3-(2-hydroxynonyl)]adenine is an effective inhibitor of cell motility and actin assembly, Proc. Natl. Acad. Sci. USA 81:6044–6048.PubMedCrossRefGoogle Scholar
  74. Schmid, G., Wagner, L., and Weiss, D. G., 1983, Rapid axoplasmic transport of free leucine, J. Neurobiol. 14:133–144.PubMedCrossRefGoogle Scholar
  75. Schubert, P., and Kreutzberg, G. W., 1982, Transneuronal transport: A way for the neuron to communicate with the environment, in: Axoplasmic Transport in Physiology and Pathology (D.G. Weiss and A. Gorio, eds.), pp. 32–43, Springer-Verlag, Berlin.Google Scholar
  76. Seitz-Tutter, D., Buchner, K., and Weiss, D. G., 1985, Rapid bidirectional transport of horseradish peroxidase (HRP) in pike olfactory nerve, Eur. J. Cell Biol. 36(Suppl. 7):61.Google Scholar
  77. Shipley, M. T., 1985, Transport of molecules from nose to brain: Transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium, Brain Res. Bull. 15:129–142.PubMedCrossRefGoogle Scholar
  78. Smith, R. S., 1982, Saltatory organelle movement and the mechanism of fast axonal transport, in: Axoplasmic Transport (D.G. Weiss, ed.), pp. 234–240, Springer-Verlag, Berlin.Google Scholar
  79. Weiss, D. G., 1982, 3-0-methyl-D-glucose and β-alanine: Rapid axoplasmic transport of metabolically inert low molecular weight substances, Neurosci. Lett. 31:241–246.PubMedCrossRefGoogle Scholar
  80. Weiss, D. G., 1987, The mechanism of axoplasmic transport, in: Axoplasmic Transport (Z. Iqbal, ed.), pp. 275–307, CRC Press, Boca Raton, Florida.Google Scholar
  81. Weiss, D. G., Krygier-Brevart, V., Gross, G. W., and Kreutzberg, G. W., 1978, Rapid axoplasmic transport in the olfactory nerve of the pike. II. Analysis of transported proteins by SDS gel electrophoresis, Brain Res. 139:77–87.PubMedCrossRefGoogle Scholar
  82. Weiss, D. G., Schmid, G., and Wagner, L., 1980, Influence of microtubule inhibitors on axoplasmic transport of free amino acids. Implications for the hypothetical transport mechanism, in: Microtubules and Microtubule Inhibitors 1980 (M. De Brabander and J. De Mey, eds.), pp. 31–41, Elsevier, Amsterdam.Google Scholar
  83. Weiss, D. G., Keller, F., Gulden, J., and Maile, W., 1986, Towards a new classification of intracellular particle movement based on quantitative analyses, Cell Motil. 6:128–135.CrossRefGoogle Scholar
  84. Weiss, P., and Holland, Y., 1967, Neuronal dynamics and axonal flow. II. The olfactory nerve as model test object, Proc. Natl. Acad. Sci. USA 57:258–264.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Dieter G. Weiss
    • 1
  • Klaus Buchner
    • 1
  1. 1.Institut für ZoologieTechnische Universität MünchenGarchingFederal Republic of Germany

Personalised recommendations