Advertisement

Photoemission Phenomena at Metallic and Semiconducting Electrodes

  • Ricardo Borjas Severeyn
  • Robert J. Gale

Abstract

The original photoelectric effect was discovered by Hertz(1) in 1887 while he was investigating the properties of electromagnetic waves. It was observed that a spark would jump a gap between two electrodes more readily when the electrodes were illuminated with light, ultraviolet light having a greater effectiveness than light from the visible region of the spectrum. This simple observation, however, was to have profound impact on our conception of how radiation and matter interact.

Keywords

Solvate Electron Image Force Semiconducting Electrode Photo Emission Outer Helmholtz Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hertz, Ann. Phys. 31, 421, 983 (1887).Google Scholar
  2. 2.
    A. Einstein, Ann. Phys. 17, 132 (1905).Google Scholar
  3. 3.
    O. W. Richardson, Phil. Mag. 23, 615 (1912); 24, 570 (1912).Google Scholar
  4. 4.
    J. J. Thomson, Phil Mag. 2, 674 (1926).Google Scholar
  5. 5.
    W. Uspensky, Z. Physik 40, 456 (1926);Google Scholar
  6. A. L. Hughes and L. A. DuBridge, Photoelectric Phenomena, McGraw-Hill, New York (1932), p. 202.Google Scholar
  7. 6.
    G. Wentzel, Probleme der Modernen Physik, Sommerfeld Festschrift, Leipzig (1928), p. 79.Google Scholar
  8. 7.
    R. H. Fowler, Phys. Rev. 38, 45 (1931).Google Scholar
  9. 8.
    A. Modinos, Field, Thermionic and Secondary Electron Emission Spectroscopy, Plenum Press, New York (1984).Google Scholar
  10. 9.
    E. C. Becquerel, C. R. Acad. Sci. 9, 143 (1839).Google Scholar
  11. 10.
    Yu. Ya. Gurevich, Yu. V. Pleskov, and Z. A. Rotenberg, Photoelectrochemistry, Consultants Bureau, New York (1980).Google Scholar
  12. 11.
    H. Berg, Naturwissenschaften 47, 320 (1960).Google Scholar
  13. 12.
    H. Berg and P. Reissmann, J. Electroanal. Chem. 24, 427 (1970).Google Scholar
  14. 13.
    M. Heyrovsky, Nature 200, 1356 (1965).Google Scholar
  15. 14.
    M. Heyrovsky, Croat. Chem. Acta. 45, 247 (1973).Google Scholar
  16. 15.
    L. I. Korshunov, Ya. M. Zolotovitskii, and V. A. Benderskii, Russ. Chem. Rev. 40(8), 699 (1971).Google Scholar
  17. 16.
    G. C. Barker and A. W. Gardner, Osnovnye voprosy sovremennoi teoreticheskvi Electrokhimii, p. 118, MIR, Moscow (1965).Google Scholar
  18. 17.
    G. C. Barker, A. W. Gardner, and G. Bottura, J. Electroanal, Chem. 45, 21 (1973).Google Scholar
  19. 18.
    G. C. Barker, Electrochim. Acta 13, 1221 (1968).Google Scholar
  20. 19.
    A. M. Brodskii and Yu. Ya. Gurevich, Sov. Phys. JETP 27, 114 (1968).Google Scholar
  21. 20.
    D. E. Grider, Ph.D. thesis, Iowa State University (1980).Google Scholar
  22. 21.
    R. Borjas Severeyn, Ph.D. thesis, Louisiana State University (1984).Google Scholar
  23. 22.
    R. H. Fowler, Phys. Rev. 38, 45 (1931).Google Scholar
  24. 23.
    R. H. Fowler, Statistical Mechanics, Cambridge Press, Cambridge, Chapter XI (1955).Google Scholar
  25. 24.
    L. A. DuBridge and W. W. Roehr, Phys. Rev. 39, 99 (1932).Google Scholar
  26. 25.
    L. A. DuBridge, Phys. Rev. 39, 108 (1932).Google Scholar
  27. 26.
    D. B. Matthews and S. U. M. Khan, Aust. J. Chem. 28, 253 (1975).Google Scholar
  28. 27.
    J. O’M. Bockris and S. U. M. Khan, Quantum Electrochemistry, Plenum Press, New York (1979), Chapter 12.Google Scholar
  29. 28.
    A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, Scattering, Reactions, and Disintegrations in Nonrelativistic Quantum Mechanics, Nauka, Moscow (1966).Google Scholar
  30. 29.
    R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York (1967).Google Scholar
  31. 30.
    A. B. Brodskii and Yu. Ya. Gurevich, Dokl. Akad. Nauk SSSR 178(4), 868 (1968).Google Scholar
  32. 31.
    Yu. Ya. Gurevich, A. M. Brodskii, and V. G. Levich, Electrokhimiya 3, 1302 (1967).Google Scholar
  33. 32.
    Yu. V. Pleskov and Z. A. Rotenberg, J. Electroanal. Chem. 20, 1 (1969).Google Scholar
  34. 33.
    A. M. Brodskii, Yu. Ya. Gurevich, and V. G. Levich, Phys. Status Solidi 40, 139 (1970).Google Scholar
  35. 34.
    H. Gerischer, D. M. Kolb, and J. K. Sass, Adv. Phys. 27, 437 (1978).Google Scholar
  36. 35.
    L. I. Korshunov, Ya. M. Zolotovitskii, and V. A. Benderskii, Electrokhimiya 4, 499 (1968).Google Scholar
  37. 36.
    Z. A. Rotenberg and Yu. V. Pleskov, Electrokhimiya 4, 826 (1968).Google Scholar
  38. 37.
    R. DeLevie and J. C. Kreuser, J. Electroanal Chem. 21, 221 (1969).Google Scholar
  39. 38.
    Yu. V. Pleskov, Z. A. Rotenberg, and V. I. Lakomov, Electrokhimiya 6, 1787 (1970).Google Scholar
  40. 39.
    Yu. V. Pleskov and Z. A. Rotenberg, Russ. Chem. Rev. 41, 21 (1972).Google Scholar
  41. 40.
    Ya. M. Zolotovitskii, L. I. Korshunov, and V. A. Benderskii, Izv. Akad. Nauk. SSSR 4, 802 (1972).Google Scholar
  42. 41.
    Z. A. Rotenberg, Electrokhimiya 10, 1031 (1974).Google Scholar
  43. 42.
    V. V. Yakushev, A. M. Skundin, and V. S. Bagotskii, Elektrokhimiya 20, 99 (1984).Google Scholar
  44. 44.
    G. D. Mahan, in: Electron and Ion Scattering of Solids (L. Fiermans, J. Vennik, and W. Dekeyser, eds.), NATO Adv. Study Inst. Ser., Ser. B. Physics, Vol. 32, pp. 1–53, Plenum Press, New York.Google Scholar
  45. 44.
    G. D. Mahan, Phys. Rev. B 2, 4334 (1970).Google Scholar
  46. 45.
    P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10, 4932 (1974).Google Scholar
  47. 46.
    I. Adawi, Phys. Rev. 134, A788 (1964).Google Scholar
  48. 47.
    J. K. Sass and H. J. Lewerenz, J. Phys. C 5, 277 (1972).Google Scholar
  49. 48.
    A. M. Brodskii and Yu. Ya. Gurevich, Theory of Electronic Emission from Metals, Nauka, Moscow (1973).Google Scholar
  50. 49.
    W. N. Hansen, in: Advances in Electrochemistry and Electrochemical Engineering (P. Delahay and C. W. Tobias, eds.), Vol. 9, pp. 1–60, John Wiley and Sons (1973).Google Scholar
  51. 50.
    L. I. Korshunov, Ya. M. Zolotovitskii, and V. A. Benderskii, Elektrokhimiya 5, 716 (1969).Google Scholar
  52. 51.
    J. K. Sass and H. Gerischer, in: Photoemission and the Electronic Properties of Surfaces, (B. Feuerbacher et al., eds.), Chapter 16, Wiley-Interscience, New York (1978).Google Scholar
  53. 52.
    B. Feuerbacher and R. F. Willis, J. Phys. C 9, 169 (1976).Google Scholar
  54. 53.
    D. Mohilner, Electronanalytical Chemistry (A. J. Bard, ed.), Vol. 1, p. 241, Marcel Dekker, New York (1966).Google Scholar
  55. 54.
    Z. A. Rotenberg, V. I. Lakomov, and Yu. V. Pleskov, Elektrokhimiya 9, 11 (1973).Google Scholar
  56. 55.
    Z. A. Rottenberg, V. I. Lakomov, and Yu. V. Pleskov, Elektrokhimiya 9, 152 (1973).Google Scholar
  57. 56.
    Z. A. Rotenberg and Yu. V. Pleskov, Electrokhimya 5, 982 (1969).Google Scholar
  58. 57.
    D. Grider, P. Lange, H. Neff, and K. Ho, Vacuum 31, 563 (1981).Google Scholar
  59. 58.
    R. G. Kokilashvili, V. V. Eletskii, and Yu. V. Pleskov, Elektrokhimiya 20, 1075 (1984).Google Scholar
  60. 59.
    W. E. Spicer and R. C. Eden, Int. Conf. on the Physics of Semiconductors, Proceedings, July 23–29, 1968, Vol. 1, Nauka, Leningrad (1968).Google Scholar
  61. 60.
    E. O. Kane, Phys. Rev. 127, 131 (1962).Google Scholar
  62. 61.
    G. W. Gobeli and F. G. Allen, Phys. Rev. 127, 141 (1962).Google Scholar
  63. 62.
    M. D. Krotova and Yu. V. Pleskov, Sov. Phys. Solid State 15, 1871 (1974).Google Scholar
  64. 63.
    Yu. Ya. Gurevich, Elektrokhimiya 8, 1564 (1972).Google Scholar
  65. 64.
    Yu. Ya. Gurevich, M. D. Krotova, and Yu. V. Pleskov, J. Electroanal. Chem. 75, 339 (1977).Google Scholar
  66. 65.
    K. Gottfied, Quantum Mechanics, Vol. 1: Fundamentals, The Benjamin Cumming Co., London (1966), pp. 443–444.Google Scholar
  67. 66.
    J. Callaway, Quantum Theory of the Solid State, Academic Press, New York (1974), pp. 24–28.Google Scholar
  68. 67.
    G. Gilat, J. Comp. Phys. 10, 432 (1972).Google Scholar
  69. 68.
    Ref. 66, pp. 521–525.Google Scholar
  70. 69.
    J. J. Scheer and J. Van Laar, Phillips Research Reports 16, 323 (1961).Google Scholar
  71. 70.
    G. W. Gobeli and F. G. Allen, in: Solid Surfaces (H. C. Gattor, ed.), p. 402, North-Holland Publishing Co., Amsterdam (1964).Google Scholar
  72. 71.
    G. W. Gobeli, F. G. Allen, and E. O. Kane, Phys. Rev. Lett. 21, 94 (1964).Google Scholar
  73. 72.
    G. W. Gobeli and F. G. Allen, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 2, pp. 253–280, Academic Press, New York (1966).Google Scholar
  74. 73.
    G. W. Gobeli and F. G. Allen, J. Chem. Phys. Solids 14, 23 (1960).Google Scholar
  75. 74.
    T. E. Fischer, Surface Sci. 13, 30 (1969).Google Scholar
  76. 75.
    W. A. Harrison, Solid State Theory, Dover Publications, New York (1979), pp. 140–142.Google Scholar
  77. 76.
    C. Kittle, Introduction to Solid State Theory, 5th Edition, John Wiley, New York (1976), pp. 218–219.Google Scholar
  78. 77.
    Yu. Ya. Gurevich and Yu. V. Pleskov, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 19, Chapter 4, Academic Press, New York (1983).Google Scholar
  79. 78.
    Yu. V. Pleskov, in: Comprehensive Treatise of Electrochemistry (J. O’M. Bockris, B. E. Conway, and E. Yeager, eds), Vol. 1, Chapter 6, Plenum Press, New York (1980).Google Scholar
  80. 79.
    R. Borjas Severeyn and R. J. Gale, J. Electroanal. Chem. 150, 619 (1983).Google Scholar
  81. 80.
    M. D. Krotova and Yu. V. Pleskov, Fiz. Tverd. Tela. 15, 2806 (1973).Google Scholar
  82. 81.
    E. Meyer, Dissertation, Tech. Univ., Munich (1973).Google Scholar
  83. 82.
    G. V. Boikova, M. D. Krotova, and Yu. V. Pleskov, Elektrokhimiya 12, 922 (1976).Google Scholar
  84. 83.
    Yu. Ya. Gurevich, M. D. Krotova, and Yu. Ya. Pleskov, J. Electroanal Chem. 75, 339 (1977).Google Scholar
  85. 84.
    R. Borjas Severeyn and R. J. Gale, Mol. Cryst. Liq. Cryst. 107, 227 (1984).Google Scholar
  86. 85.
    C. E. Krohn and J. S. Thompson, Chem. Phys. Lett. 65, 132 (1979).Google Scholar
  87. 86.
    R. E. Malpas, K. Itaya, and A. J. Bard, J. Am. Chem. Soc. 101, 2535 (1979).Google Scholar
  88. 87.
    G. V. Amerongen, D. Guyomard, R. Heindl, M. Herlem, and J.-L. Sculfort, J. Electrochem. Soc. 129, 1998 (1982).Google Scholar
  89. 88.
    M. Herlem, D. Guyomard, C. Mathieu, J. Belloni, and J.-L. Sculfort, J. Phys. Chem. 88, 3826 (1984).Google Scholar
  90. 89.
    J. Vondrak, J. Buldska, I. Jakubec, and J. Velek, Electrochim. Acta 29, 315 (1984).Google Scholar
  91. 90.
    J. O’M. Bockris and K. Uosaki, J. Electrochem. Soc . 125, 223 (1977).Google Scholar
  92. 91.
    J. O’M. Bockris, K. Uosaki, and H. Kita, J. Appl. Phys. 52, 808 (1981).Google Scholar
  93. 92.
    J. O’M. Bockris and K. Uosaki, in: (J. B. Goodenough and M. Stanley Whittingham, eds.) Adv. Chem. Ser. No. 163, Solid State Chemistry of Energy Conversion and Storage, pp. 33–70, American Chemical Society, Washington, D.C. (1977).Google Scholar
  94. 93.
    J. O’M. Bockris and K. Uosaki, Int. J. Hydrogen Energy 3, 157 (1977).Google Scholar
  95. 94.
    H. Gerischer, in: Advances in Electrochemistry and Electrochemical Engineering (P. Delahay and C. W. Tobias, eds.), Vol. 1, p. 139, John Wiley and Sons, New York (1961).Google Scholar
  96. 95.
    A. J. Nozik, Ann. Rev. Phys. Chem. 29, 189 (1978).Google Scholar
  97. 96.
    A. J. Nozik, in: Photochemical Conversion and Storage of Solar Energy (J. S. Connolly, ed.), Chapter 10, Academic Press, New York (1981).Google Scholar
  98. 97.
    D. S. Boudreaux, F. Williams, and A. J. Nozik, J. Appl Phys. 51, 2158 (1980).Google Scholar
  99. 98.
    G. Cooper, J. A. Turner, B. A. Parkinson, and A. J. Nozik, J. Appl Phys. 54, 6463 (1983).Google Scholar
  100. 99.
    F. Williams, and A. J. Nozik, Nature 271, 137 (1978).Google Scholar
  101. 100.
    J. A. Turner and A. J. Nozik, Appl Phys. Lett. 41, 101 (1982).Google Scholar
  102. 101.
    A. J. Nozik, in: Photovoltaic and Photoelectrochemical Solar Energy Conversion (F. Cardon, W. P. Gomes, and W. Dekeyser, eds.), pp. 263–312, Plenum Press, London, published in cooperation with NATO Scientific Affairs Division (1981).Google Scholar
  103. 102.
    A. J. Nozik, D. S. Boudreaux, R. R. Chance, and F. Williams, in: Interfacial Photoprocesses: Energy Conversion and Synthesis (M. S. Wrighton, ed.), Adv. Chem. Ser. No. 184, pp. 155–171, American Chemical Society, Washington, D. C. (1980).Google Scholar
  104. 103.
    J. A. Turner, J. Manassen, and A. J. Nozik, Appl. Phys. Lett. 37, 488 (1980).Google Scholar
  105. 104.
    F. Williams and A. J. Nozik, Nature 312, 21 (1984).Google Scholar
  106. 105.
    M. S. Matheson, in: Physical Chemistry: An Advanced Treatise (H. Eyring, ed.), Vol. 7, p. 533, Academic Press, New York (1975).Google Scholar
  107. 106.
    R. Gilmont and S. J. Silvis, Am. Lab., December, 46 (1974).Google Scholar
  108. 107.
    D. T. Sawyer and J. L. Roberts, Jr., Experimental Electrochemistry for Chemists, John Wiley and Sons, New York (1974).Google Scholar
  109. 108.
    D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals, 2nd Edition, Pergamon Press, New York (1981).Google Scholar
  110. 109.
    T. E. Furtak and D. W. Lynch, J. Electroanal. Chem. 79, 1 (1977).Google Scholar
  111. 110.
    V. G. Bozhkov, G. A. Kataev, G. F. Kovtuneko, and K. V. Saldatenko, Elektrokhimiya 7, 549 (1971).Google Scholar
  112. 111.
    R. Greef, Instrumental Methods in Electrochemisty, Ellis Horwood Series in Physical Chemistry, Halsted, New York (1985).Google Scholar
  113. 112.
    M. C. H. McKubre and D. D. Macdonald, in: Comprehensive Treatise of Electrochemistry (R. E. White, J. O’M. Bockris, B. E. Conway, and E. Yeager, eds.), Vol. 8, Chapter 1, Plenum Press, New York (1984).Google Scholar
  114. 113.
    E. H. Fisher, Laser Focus, November (1977).Google Scholar
  115. 114.
    G. M. Hieftje and G. Horlick, Am. Lab., March, 76 (1981).Google Scholar
  116. 115.
    T. H. Ridgway and H. B. Mark, Jr., in: Comprehensive Treatise of Electochemistry (R. E. White, J. O’M. Bockris, B. E. Conway, and E. Yeager, eds.), Vol. 8, Chapter 2, Plenum Press, New York (1984).Google Scholar
  117. 116.
    G. T. Bennet and J. C. Thompson, J. Chem. Phys. 84, 1901 (1986).Google Scholar
  118. 117.
    Z. A. Rotenburg, V. I. Lakomov, and Yu. V. Pleskov, J. Electroanal. Chem. 27, 403 (1970).Google Scholar
  119. 118.
    V. V. Eletskii and Yu. V. Pleskov, Elektrokhimiya 10, 179 (1974).Google Scholar
  120. 119.
    S. Kh. Samvelyan, Z. A. Rotenberg, and V. G. Mairanovskii, Elektrokhimiya 19, 1319 (1983).Google Scholar
  121. 120.
    S. D. Babenko, V. A. Benderskii, A. G. Krivenko, and V. A. Kurmaz, J. Electroanal. Chem. 159, 163 (1983).Google Scholar
  122. 121.
    D. J. Schiffrin, Faraday Discuss Chem. Soc. 56, 75–95 (1973).Google Scholar
  123. 122.
    Z. A. Rotenberg and N. M. Rufman, J. Elektrokhimiya 19, 1349 (1983).Google Scholar
  124. 123.
    Z. A. Rotenberg and N. M. Rufman, J. Electroanal. Chem. 175, 153 (1984).Google Scholar
  125. 124.
    D. Bradley and J. Wilkinson, J. Chem. Soc. (A), 531 (1967).Google Scholar
  126. 125.
    A. Singh, H. D. Gesser, and A. R. Scott, Chem. Phys. Lett. 2, 271 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ricardo Borjas Severeyn
    • 1
  • Robert J. Gale
    • 2
  1. 1.Chemistry DepartmentUniversity of WyomingLaramieUSA
  2. 2.Chemistry DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations