On Diffusion Semigroups Generated by Semi-Elliptic Differential Operators in Infinite Dimensions

  • Gottlieb Leha

Abstract

We want to study some continuity properties of operator semigroups, generated by a semi-elliptic differential operator on a real separable Hilbert space ℍ. To this end, let us begin by writing the finite-dimensional semi-elliptic differential operator
$$\text{Lu(x) = }\frac{\text{1}}{\text{2}}\sum\limits_{i,j = 1}^n {a_{ij} } (x)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}(x) + \sum\limits_{i = 1}^n {b_i } (x)\frac{{\partial u}}{{\partial x_i }}(x)$$
(1)
on ℍ = ℝn in coordinate-free form as
$$ Lu(x) = \frac{1}{2} tr u''(x)(a(x)\cdot ,\cdot ) + u'(x)(b(x))$$
(1a)

Keywords

Covariance Topo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azencott, R. (1974), Behavior of diffusion semi-groups at infinity, Bull. Soc. Math. France 102, 193–240.MathSciNetMATHGoogle Scholar
  2. Dynkin, E. B. (1965), “Markov Processes”, Vol. I, Springer, Berlin.MATHGoogle Scholar
  3. Ichikawa, A. (1984), Semilinear Stochastic Evolution Equations: Boundedness, Stability and Invariant measures, Stochastics 12, 1–39.MathSciNetMATHCrossRefGoogle Scholar
  4. Leha, G. and Ritter, G. (1984), On Diffusion Processes and their Semigroups in Hilbert Spaces with an Application to Interacting Stochastic Systems, Ann, of Probab. 12 (4), 1077–1112.MathSciNetMATHCrossRefGoogle Scholar
  5. Leha, G. (1984), Invarianz und Reversibilität für Diffusionsprozesse in Hberträumen, Habilitationsschrift, Universität Erlangen.Google Scholar
  6. Pazy, A. (1983), “Semigroups of Linear Operators and Applications to Partial Differential Equations”, Appl. Math. Sc. Vol. 44, Springer, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gottlieb Leha
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations