Skip to main content

Semiconductor Dimensional Metrology Using the Scanning Electron Microscope

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

The scanning electron microscope (SEM) has unique capabilities for high resolution examination of surface structure and composition. Due to the resolution limits of optical inspection techniques, the semiconductor manufacturing industry has become a rapidly expanding field for SEM applications. As microcircuit groundrules (minimum feature sizes) continue to shrink below one micrometer non-optical measurement methods such as scanning electron microscopy must play an increasingly important role in the inspection of semiconductor device structures at various stages during their fabrication [1,2]. The measurement of structure dimensions such as circuit linewidths (or the spaces between lines) [3] and the measurement of circuit overlay [4] requires a minimum resolution of better than 1/10 groundrule dimensions. In fact, many manufacturing line managers state their resolution requirement as less than 1/20 groundrule dimensions, particularly during the development of a new process. Similarly, it is now apparent from device failure analysis that defects as small as 1/10 groundrule dimensions must also be detected and measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Maher and H. R. Rottman, SPIE 565, 160 (1985).

    Google Scholar 

  2. P. W. Grant, SPIE 565, 169 (1985).

    Google Scholar 

  3. M. G. Rosenfield, SPIE 775,. 70 (1987).

    Google Scholar 

  4. K. L. Harris, S. Miyauchi, and T. Namae, SPIE 775, 180 (1987).

    Google Scholar 

  5. O. C. Wells, Scanning Electron Microscopy (McGraw-Hill, Inc., USA, 1974), p. 2.

    Google Scholar 

  6. H. Drescher, L. Reimer, and H. Seidel, Z. f. angew. Physik 29, 331 (1977).

    Google Scholar 

  7. K-R. Peters, Scanning Electron Microsc. 1982 IV, 1359 (1982).

    Google Scholar 

  8. M. T. Postek, Review of Progress in Quantitative NDE, 6B, D. O. Thompson and D. E. Chimenti, Eds., (Plenum Press, New York, 1987), p. 1327.

    Google Scholar 

  9. M. T. Postek and D. C. Joy, Solid State Technol. 29(11), 145 (1986)

    Google Scholar 

  10. M. T. Postek and D. C. Joy, Solid State Technol. 29(12), 77 (1986).

    Google Scholar 

  11. Examples include the Vickers 3006, Hitachi S-6000, S-8000 and S-800 series, KLA/Holon 2711, ISI/Akashi MEA-3000, Nanometrics Cwickscan IIIE, and others.

    Google Scholar 

  12. G. D. Danilatos, Scanning 4, 9 (1981)

    Google Scholar 

  13. G. D. Danilatos, Scanning 7 26 (1985).

    Google Scholar 

  14. M. T. Postek, R. D. Larrabee, and W. J. Keery, “Scanning Electron Microscope Linewidth Measurement Standards Program at the National Bureau of Standards,” EMSA Bulletin (in press).

    Google Scholar 

  15. D. C. Joy, Scanning Microsc. 2, in press (1988).

    Google Scholar 

  16. O. C. Wells, Scanning Electron Microscopy (McGraw-Hill, Inc., USA, 1974) p. 65.

    Google Scholar 

  17. O. C. Wells, Scanning 1 58 (1978)

    Google Scholar 

  18. O. C. Wells and P. J. Bailey, J. Microsc. 138(1), RP3 (1985).

    Article  Google Scholar 

  19. N. Hashimoto, H. Todokoro, S. Fukuhara, and K. Senoo, Jap. J. Appl. Phys., 21–1, 199 (1982).

    Google Scholar 

  20. M. Mioshi, M. Ishikawa, and K. Okumura, Scanning Electron Microsc. 1982 IV, 1507 (1982).

    Google Scholar 

  21. R. A. Odula, IEEE Trans. Electron Devices ED-26, 644 (1979).

    Google Scholar 

  22. E. H. Snow, A. S. Grove, and D. J. Fitzgerald, Proc. IEEE 55, 1168 (1967).

    Article  CAS  Google Scholar 

  23. T. P. Ma, G. Scoggan, and R. Leone, Appl. Phys. Lett. 27, 61 (1975).

    Article  CAS  Google Scholar 

  24. J. M. Aitken and D. R. Young, J. Appl. Phys. 49, 3386 (1978).

    Article  CAS  Google Scholar 

  25. J. M. Aitken, J. Electronic Materials 9, 639 (1980).

    Article  CAS  Google Scholar 

  26. J. M. Aitken and C. Y. Ting, Proc. Int. Electron Devices Meeting, (1981), p. 50.

    Google Scholar 

  27. H. Shimaya, N. Shiono, O. Nakajima, C. Hashimoto, and Y. Sakakibara, J. Electrochem. Soc. 130, 945 (1983).

    Article  CAS  Google Scholar 

  28. J. Frosien and B. Lischke, Microcircuit Engineering 84, 441 (1985).

    Google Scholar 

  29. M. Brunner and R. Schmid, Scanning Electron Microsc. 1986 II, 380 (1986).

    Google Scholar 

  30. J. Cazaux, J. Appl. Phys. 59, 1418 (1986).

    Article  Google Scholar 

  31. S. Erasmus, Proc. 30th Ann. Cof. Electron, Ion, and Photon Beams, (1986), p. 409.

    Google Scholar 

  32. F. Dacol and S. Utterback, Scanning Microsc. 1(III), 1045 (1987).

    CAS  Google Scholar 

  33. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids. 2nd ed. (Clarendon Press, Oxford, England, 1959), p. 216.

    Google Scholar 

  34. A. Iranmanesh and R. F. W. Pease, J. Vac. Sci. Technol. B1, 91 (1983).

    Google Scholar 

  35. B. R. Stallard and Y. Bukhman, SPIE 775, 60 (1987).

    Google Scholar 

  36. D. E. Schrope, Scanning Microsc. 1(III), 1055 (1987).

    Google Scholar 

  37. F. Rohrlich and B. C. Carlson, Phys. Rev. 93, 38 (1954).

    Article  CAS  Google Scholar 

  38. W. Reuter, J. D. Kuptsis, A. Lurio, and D. F. Kyser, J. Phys. D: Appl. Phys. 11, 2633 (1978).

    Article  CAS  Google Scholar 

  39. K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

    Article  CAS  Google Scholar 

  40. T. E. Everhart and P. H. Hoff, J. Appl. Phys. 42, 5837 (1971).

    Article  CAS  Google Scholar 

  41. D. F. Kyser and K. Murata, IBM J. Res. Develop. 18, 352 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Utterback, S.G. (1988). Semiconductor Dimensional Metrology Using the Scanning Electron Microscope. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0979-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0979-6_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8275-4

  • Online ISBN: 978-1-4613-0979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics